ﻻ يوجد ملخص باللغة العربية
The effects of space charges on hysteresis loops and field distributions in ferroelectrics have been investigated numerically using the phenomenological Landau-Ginzburg-Devonshire theory. Cases with the ferroelectric fully and partially depleted have been considered. In general, increasing the number of charged impurities results in a lowering of the polarization and coercive field values. Squarer loops were observed in the partially depleted cases and a method was proposed to identify fully depleted samples experimentally from dielectric and polarization measurements alone. Unusual field distributions found for higher dopant concentrations have some interesting implications for leakage mechanisms and limit the range of validity of usual semiconductor equations for carrier transport.
We report a dielectric relaxation in ferroelectric thin films of the ABO3 family. We have compared films of different compositions with several growth modes: sputtering (with and without magnetron) and sol-gel. The relaxation was observed at cryogeni
We report on nanoscale strain gradients in ferroelectric HoMnO3 epitaxial thin films, resulting in a giant flexoelectric effect. Using grazing-incidence in-plane X-ray diffraction, we measured strain gradients in the films, which were 6 or 7 orders o
We investigated domain kinetics by measuring the polarization switching behaviors of polycrystalline Pb(Zr,Ti)O$_{3}$ films, which are widely used in ferroelectric memory devices. Their switching behaviors at various electric fields and temperatures
Doping ferroelectric Hf0.5Zr0.5O2 with La is a promising route to improve endurance. However, the beneficial effect of La on the endurance of polycrystalline films may be accompanied by degradation of the retention. We have investigated the endurance
There is growing evidence that domain walls in ferroics can possess emergent properties that are absent in bulk materials. For example, 180 domain walls in the ferroelectric-antiferromagnetic BiFeO3 are particularly interesting because they have been