ترغب بنشر مسار تعليمي؟ اضغط هنا

Tunnel magnetoresistance and robust room temperature exchange bias with multiferroic BiFeO3 epitaxial thin films

227   0   0.0 ( 0 )
 نشر من قبل Helene Bea
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the functionalization of multiferroic BiFeO3 epitaxial films for spintronics. A first example is provided by the use of ultrathin layers of BiFeO3 as tunnel barriers in magnetic tunnel junctions with La2/3Sr1/3MnO3 and Co electrodes. In such structures, a positive tunnel magnetoresistance up to 30% is obtained at low temperature. A second example is the exploitation of the antiferromagnetic spin structure of a BiFeO3 film to induce a sizeable (~60 Oe) exchange bias on a ferromagnetic film of CoFeB, at room temperature. Remarkably, the exchange bias effect is robust upon magnetic field cycling, with no indications of training.

قيم البحث

اقرأ أيضاً

153 - H. Bea , M. Bibes , F. Ott 2007
We have combined neutron scattering and piezoresponse force microscopy to study the relation between the exchange bias observed in CoFeB/BiFeO3 heterostructures and the multiferroic domain structure of the BiFeO3 films. We show that the exchange fiel d scales with the inverse of the ferroelectric and antiferromagnetic domain size, as expected from Malozemoffs model of exchange bias extended to multiferroics. Accordingly, polarized neutron reflectometry reveals the presence of uncompensated spins in the BiFeO3 film at the interface with the CoFeB. In view of these results we discuss possible strategies to switch the magnetization of a ferromagnet by an electric field using BiFeO3.
We demonstrate a direct correlation between the domain structure of multiferroic BiFeO3 thin films and exchange bias of Co0.9Fe0.1/BiFeO3 heterostructures. Two distinct types of interactions, an enhancement of the coercive field (exchange enhancement ) and an enhancement of the coercive field combined with large shifts of the hysteresis loop (exchange bias), have been observed in these heterostructures, which depend directly on the type and crystallography of the nanoscale (2 nm) domain walls in the BiFeO3 film. We show that the magnitude of the exchange bias interaction scales with the length of 109 degree ferroelectric domain walls in the BiFeO3 thin films which have been probed via piezoresponse force microscopy and x-ray magnetic circular dichroism.
Magnetic phase transitions in multiferroic bismuth ferrite (BiFeO3) induced by magnetic field, epitaxial strain, and composition modification are considered. These transitions from a spatially modulated spin spiral state to a homogenous antiferromagn etic one are accompanied by the release of latent magnetization and a linear magnetoelectric effect that makes BiFeO3-based materials efficient room-temperature single phase multiferroics.
In multiferroic BiFeO3 thin films grown on highly mismatched LaAlO3 substrates, we reveal the coexistence of two differently distorted polymorphs that leads to striking features in the temperature dependence of the structural and multiferroic propert ies. Notably, the highly distorted phase quasi-concomitantly presents an abrupt structural change, transforms from a hard to a soft ferroelectric and transitions from antiferromagnetic to paramagnetic at 360+/-20 K. These coupled ferroic transitions just above room temperature hold promises of giant piezoelectric, magnetoelectric and piezomagnetic responses, with potential in many applications fields.
We report the presence of giant spontaneous exchange bias (HSEB) in a hard and soft antiferromagnetic composite of BiFeO3-TbMnO3 (BFO-TMO in 7:3 and 8:2 ratio). The HSEB varies between 5-778Oe, but persists up to room temperature with a maximum near a spin reorientation transition temperature observed from magnetization vs. temperature measurement in Zero-field cooled (ZFC) and Field cooled (FC) modes. Isothermal remnant magnetization measurements at room temperature indicate the presence of an interfacial layer of a 2 dimensional dilute antiferromagnet in a field (2D DAFF). A stable value of the exchange bias has been observed via training effect measurements which signify the role of interfacial exchange coupling in the system. Based on the experimental results we explain the presence of the giant spontaneous exchange bias on the basis of a strong strain-mediated magnetoelectriccoupling induced exchange interaction and the creation of 2D DAFF layer at the interface. Theproperties of this layer are defined by canting and pinning of BFO spins at the interface with TMO due to Fe and Mn interaction. X-ray Magnetic Circular Dichroism (XMCD) confirms the presence of canted antiferromagnetic ordering of BiFeO3, charge transfer between Mn ions and different magnetically coupled layers which play vital role in getting the exchange bias.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا