ترغب بنشر مسار تعليمي؟ اضغط هنا

Ferroelectric polarization flop in a frustrated magnet MnWO$_4$ induced by magnetic fields

94   0   0.0 ( 0 )
 نشر من قبل Kouji Taniguchi
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The relationship between magnetic order and ferroelectric properties has been investigated for MnWO$_4$ with long-wavelength magnetic structure. Spontaneous electric polarization is observed in an elliptical spiral spin phase. The magnetic-field dependence of electric polarization indicates that the noncollinear spin configuration plays a key role for the appearance of ferroelectric phase. An electric polarization flop from the b direction to the a direction has been observed when a magnetic field above 10T is applied along the b axis. This result demonstrates that an electric polarization flop can be induced by a magnetic field in a simple system without rare-earth f-moments.



قيم البحث

اقرأ أيضاً

Frustrated systems exhibit remarkable properties due to the high degeneracy of their ground states. Stabilised by competing interactions, a rich diversity of typically nanometre-sized phase structures appear in polymer and colloidal systems, while th e surface of ice pre-melts due to geometrically frustrated interactions. Atomic spin systems where magnetic interactions are frustrated by lattice geometry provide a fruitful source of emergent phenomena, such as fractionalised excitations analogous to magnetic monopoles. The degeneracy inherent in frustrated systems may prevail all the way down to absolute zero temperature, or it may be lifted by small perturbations or entropic effects. In the geometrically frustrated Ising--like magnet Ca3Co2O6, we follow the temporal and spatial evolution of nanoscale magnetic fluctuations firmly embedded inside the spin--density--wave magnetic structure. These fluctuations are a signature of a competing ferrimagnetic phase with an incommensurability that is different from, but determined by the host. As the temperature is lowered, the fluctuations slow down into a super-paramagnetic regime of stable spatiotemporal nano-structures.
Gd3Ga5O12, (GGG), has an extraordinary magnetic phase diagram, where no long range order is found down to 25 mK despite Theta_CW approx 2 K. However, long range order is induced by an applied field of around 1 T. Motivated by recent theoretical devel opments and the experimental results for a closely related hyperkagome system, we have performed neutron diffraction measurements on a single crystal sample of GGG in an applied magnetic field. The measurements reveal that the H-T phase diagram of GGG is much more complicated than previously assumed. The application of an external field at low T results in an intensity change for most of the magnetic peaks which can be divided into three distinct sets: ferromagnetic, commensurate antiferromagnetic, and incommensurate antiferromagnetic. The ferromagnetic peaks (e.g. (112), (440) and (220)) have intensities that increase with the field and saturate at high field. The antiferromagnetic reflections have intensities that grow in low fields, reach a maximum at an intermediate field (apart from the (002) peak which shows two local maxima) and then decrease and disappear above 2 T. These AFM peaks appear, disappear and reach maxima in different fields. We conclude that the competition between magnetic interactions and alternative ground states prevents GGG from ordering in zero field. It is, however, on the verge of ordering and an applied magnetic field can be used to crystallise ordered components. The range of ferromagnetic and antiferromagnetic propagation vectors found reflects the complex frustration in GGG.
We report the direct observation of a magnetic-feld induced long-wavelength spin spiral modulation in the chiral compound Ba3TaFe3Si2O14. This new spin texture emerges out of a chiral helical ground state, and is hallmarked by the onset of a unique c ontribution to the bulk electric polarization, the sign of which depends on the crystal chirality. The periodicity of the feld induced modulation, several hundreds of nm depending on the field value, is comparable to the length scales of mesoscopic topological defects such as skyrmions, merons and solitons. The phase transition and observed threshold behavior are consistent with a phenomenology based on the allowed Lifshitz invariants for the chiral symmetry of langasite, which intriguingly contain all the ingredients for the possible realization of topologically stable antiferromagnetic skyrmions.
The structural distortion and magnetoelastic coupling induced through commensurate magnetism has been investigated by neutron diffraction in structurally related MnWO$_4$ and NaFe(WO$_4$)$_2$. Both systems exhibit a competition of incommensurate spir al and commensurate spin up-up-down-down ordering along the magnetic chains. In the latter commensurate phases, the alternatingly parallel and antiparallel arrangement of Fe$^{3+}$ respectively Mn$^{2+}$ moments leads to sizeable bond-angle modulation and thus to magnetic dimerization. For NaFe(WO$_4$)$_2$ this structural distortion has been determined to be strongest for the low-field up-up-down-down arrangement, and the structural refinement yields a bond-angle modulation of $pm 1.15(16)$ degrees. In the commensurate phase of MnWO$_4$, superstructure reflections signal a comparable structural dimerization and thus strong magneto-elastic coupling different to that driving the multiferroic order. Pronounced anharmonic second- and third-order reflections in the incommensurate and multiferroic phase of MnWO$_4$ result from tiny commensurate fractions that can depin multiferroic domains.
We consider magnon excitations in the spin-glass phase of geometrically frustrated antiferromagnets with weak exchange disorder, focussing on the nearest-neighbour pyrochlore-lattice Heisenberg model at large spin. The low-energy degrees of freedom i n this system are represented by three copies of a U(1) emergent gauge field, related by global spin-rotation symmetry. We show that the Goldstone modes associated with spin-glass order are excitations of these gauge fields, and that the standard theory of Goldstone modes in Heisenberg spin glasses (due to Halperin and Saslow) must be modified in this setting.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا