ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin accumulation probed in multiterminal lateral all-metallic devices

114   0   0.0 ( 0 )
 نشر من قبل Marius Costache
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study spin accumulation in an aluminium island, in which the injection of a spin current and the detection of the spin accumulation are done by means of four cobalt electrodes that connect to the island through transparent tunnel barriers. Although the four electrodes are designed as two electrode pairs of the same shape, they nonetheless all exhibit distinct switching fields. As a result the device can have several different magnetic configurations. From the measurements of the amplitude of the spin accumulation, we can identify these configurations, and using the diffusion equation for the spin imbalance, we extract the spin relaxation length $lambda_mathrm{sf} = 400 pm 50$~nm and an interface spin current polarization $P = (10 pm 1)%$ at low temperature and $lambda_mathrm{sf} = 350 pm 50$~nm, $P = (8 pm 1)%$ at room temperature.

قيم البحث

اقرأ أيضاً

We find extraordinary behavior of the local two-terminal spin accumulation signals in ferromagnet (FM)/semiconductor (SC) lateral spin-valve devices. With respect to the bias voltage applied between two FM/SC Schottky tunnel contacts, the local spin- accumulation signal can show nonmonotonic variations, including a sign inversion. A part of the nonmonotonic features can be understood qualitatively by considering the rapid reduction in the spin polarization of the FM/SC interfaces with increasing bias voltage. In addition to the sign inversion of the FM/SC interface spin polarization, the influence of the spin-drift effect in the SC layer and the nonlinear electrical spin conversion at a biased FM/SC contact are discussed.
84 - Y. Fukuma , L. Wang , H. Idzuchi 2011
The nonlocal spin injection in lateral spin valves is highly expected to be an effective method to generate a pure spin current for potential spintronic application. However, the spin valve voltage, which decides the magnitude of the spin current flo wing into an additional ferromagnetic wire, is typically of the order of 1 {mu}V. Here we show that lateral spin valves with low resistive NiFe/MgO/Ag junctions enable the efficient spin injection with high applied current density, which leads to the spin valve voltage increased hundredfold. Hanle effect measurements demonstrate a long-distance collective 2-pi spin precession along a 6 {mu}m long Ag wire. These results suggest a route to faster and manipulable spin transport for the development of pure spin current based memory, logic and sensing devices.
Terahertz (THz) spin-to-charge conversion has become an increasingly important process for THz pulse generation and as a tool to probe ultrafast spin interactions at magnetic interfaces. However, its relation to traditional, steady state, ferromagnet ic resonance techniques is poorly understood. Here we investigate nanometric trilayers of Co/X/Pt (X=Ti, Au or Au0:85W0:15) as a function of the X layer thickness, where THz emission generated by the inverse spin Hall effect is compared to the Gilbert damping of the ferromagnetic resonance. Through the insertion of the X layer we show that the ultrafast spin current injected in the non-magnetic layer defines a direct spin conductance, whereas the Gilbert damping leads to an effective spin mixing-conductance of the trilayer. Importantly, we show that these two parameters are connected to each other and that spin-memory losses can be modeled via an effective Hamiltonian with Rashba fields. This work highlights that magneto-circuits concepts can be successfully extended to ultrafast spintronic devices, as well as enhancing the understanding of spin-to-charge conversion processes through the complementarity between ultrafast THz spectroscopy and steady state techniques.
By studying the time-dependent axial and radial growth of InSb nanowires, we map the conditions for the synthesis of single-crystalline InSb nanocrosses by molecular beam epitaxy. Low-temperature electrical measurements of InSb nanocross devices with local gate control on individual terminals exhibit quantized conductance and are used to probe the spatial distribution of the conducting channels. Tuning to a situation where the nanocross junction is connected by few-channel quantum point contacts in the connecting nanowire terminals, we show that transport through the junction is ballistic except close to pinch-off. Combined with a new concept for shadow-epitaxy of patterned superconductors on nanocrosses, the structures reported here show promise for the realization of non-trivial topological states in multi-terminal Josephson Junctions.
We present a simple fabrication technique for lateral nanowire wrap-gate devices with high capacitive coupling and field-effect mobility. Our process uses e-beam lithography with a single resist-spinning step, and does not require chemical etching. W e measure, in the temperature range 1.5-250 K, a subthreshold slope of 5-54 mV/decade and mobility of 2800-2500 $cm^2/Vs$ -- significantly larger than previously reported lateral wrap-gate devices. At depletion, the barrier height due to the gated region is proportional to applied wrap-gate voltage.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا