ﻻ يوجد ملخص باللغة العربية
A microscopic model is constructed which is able to describe multiple magnetic flux transitions as observed in recent ultra-low temperature tunnel experiments on an aluminum superconducting ring with normal metal - insulator - superconductor junctions [Phys. Rev. B textbf{70}, 064514 (2004)]. The unusual multiple flux quantum transitions are explained by the formation of metastable states with large vorticity. Essential in our description is the modification of the pairing potential and the superconducting density of states by a sub-critical value of the persistent current which modulates the measured tunnel current. We also speculate on the importance of the injected non-equilibrium quasiparticles on the stability of these metastable states.
We solve the Ginzburg-Landau equation (GLE) for the mesoscopic superconducting thin film of the square shape in the magnetic field for the wide range of the Ginzburg-Landau parameter $0.05<kappa_{eff}<infty $. We found that the phase with the antivor
We study the magnetic field driven Quantum Phase Transition (QPT) in electrostatically gated superconducting LaTiO3/SrTiO3 interfaces. Through finite size scaling analysis, we show that it belongs to the (2+1)D XY model universality class. The system
Gray tin, also known as {alpha}-Sn, has been attracting research interest recent years due to its topological nontrivial properties predicted theoretically. The Dirac linear band dispersion has been proved experimentally by angle resolved photoemissi
The magnetic flux periodicity of superconducting loops as well as flux quantization itself are a manifestation of macroscopic quantum phenomena with far reaching implications. They provide the key to the understanding of many fundamental properties o
We show that the three-junction SQUID device designed for the Josephson flux qubit can be used to study quantum chaos when operated at high energies. In the parameter region where the system is classically chaotic we analyze the spectral statistics.