ترغب بنشر مسار تعليمي؟ اضغط هنا

A photonic bandgap resonator to facilitate GHz frequency conductivity experiments in pulsed magnetic fields

115   0   0.0 ( 0 )
 نشر من قبل Ross David McDonald
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe instrumentation designed to perform millimeter-wave conductivity measurements in pulsed high magnetic fields at low temperatures. The main component of this system is an entirely non-metallic microwave resonator. The resonator utilizes periodic dielectric arrays (photonic bandgap structures) to confine the radiation, such that the resonant modes have a high Q-factor, and the system possesses sufficient sensitivity to measure small samples within the duration of a magnet pulse. As well as measuring the sample conductivity to probe orbital physics in metallic systems, this technique can detect the sample permittivity and permeability allowing measurement of spin physics in insulating systems. We demonstrate the system performance in pulsed magnetic fields with both electron paramagnetic resonance experiments and conductivity measurements of correlated electron systems.

قيم البحث

اقرأ أيضاً

133 - S. Schmidt , B. Wolf , M. Sieling 1998
We present ESR results for 35-134GHz in the antiferromagnet CsCuCl3 at T=1.5K. The external field is applied perpendicular to the hexagonal c-axis. With our pulsed field facility we reach 50T an unprecedented field for low temperature ESR. We observe strong resonances up to fields close to the ferromagnetic region of ~30T. These results are discussed in a model for antiferromagnetic modes in a two-dimensional frustrated triangular spin system.
We measure the Hall conductivity, $sigma_{xy}$, on a Corbino geometry sample of a high-mobility AlGaAs/GaAs heterostructure in a pulsed magnetic field. At a bath temperature about 80 mK, we observe well expressed plateaux in $sigma_{xy}$ at integer f illing factors. In the pulsed magnetic field, the Laughlin condition of the phase coherence of the electron wave functions is strongly violated and, hence, is not crucial for $sigma_{xy}$ quantization.
In addition to unconventional high-Tc superconductivity, the iron arsenides exhibit strong magnetoelastic coupling and a notable electronic anisotropy within the a-b plane. We relate these properties by studying underdoped Ba(Fe{1-x}Co{x})2As2 by x-r ay diffraction in pulsed magnetic fields up to 27.5 Tesla. We exploit magnetic detwinning effects to demonstrate anisotropy in the in-plane susceptibility, which develops at the structural phase transition despite the absence of magnetic order. The degree of detwinning increases smoothly with decreasing temperature, and a single- domain condition is realized over a range of field and temperature. At low temperatures we observe an activated behavior, with a large hysteretic remnant effect. Detwinning was not observed within the superconducting phase for accessible magnetic fields.
We present measurements of the resistivity $rho_{x,x}$ of URu2Si2 high-quality single crystals in pulsed high magnetic fields up to 81~T at a temperature of 1.4~K and up to 60~T at temperatures down to 100~mK. For a field textbf{H} applied along the magnetic easy-axis textbf{c}, a strong sample-dependence of the low-temperature resistivity in the hidden-order phase is attributed to a high carrier mobility. The interplay between the magnetic and orbital properties is emphasized by the angle-dependence of the phase diagram, where magnetic transition fields and crossover fields related to the Fermi surface properties follow a 1/$costheta$-law, $theta$ being the angle between textbf{H} and textbf{c}. For $mathbf{H}parallelmathbf{c}$, a crossover defined at a kink of $rho_{x,x}$, as initially reported in [Shishido et al., Phys. Rev. Lett. textbf{102}, 156403 (2009)], is found to be strongly sample-dependent: its characteristic field $mu_0H^*$ varies from $simeq20$~T in our best sample with a residual resistivity ratio RRR of $225$ to $simeq25$~T in a sample with a RRR of $90$. A second crossover is defined at the maximum of $rho_{x,x}$ at the sample-independent characteristic field $mu_0H_{rho,max}^{LT}simeq30$~T. Fourier analyzes of SdH oscillations show that $H_{rho,max}^{LT}$ coincides with a sudden modification of the Fermi surface, while $H^*$ lies in a regime where the Fermi surface is smoothly modified. For $mathbf{H}parallelmathbf{a}$, i) no phase transition is observed at low temperature and the system remains in the hidden-order phase up to 81~T, ii) quantum oscillations surviving up to 7~K are related to a new and almost-spherical orbit - for the first time observed here - at the frequency $F_lambdasimeq1400$~T and associated with a low effective mass $m^*_lambda=(1pm0.5)cdot m_0$, and iii) no Fermi surface modification occurs up to 81~T.
De Haas-van Alphen oscillations of the organic metal $theta$-(ET)$_4$ZnBr$_4$(C$_6$H$_4$Cl$_2$) are studied in pulsed magnetic fields up to 81 T. The long decay time of the pulse allows determining reliable field-dependent amplitudes of Fourier compo nents with frequencies up to several kiloteslas. The Fourier spectrum is in agreement with the model of a linear chain of coupled orbits. In this model, all the observed frequencies are linear combinations of the frequency linked to the basic orbit $alpha$ and to the magnetic-breakdown orbit $beta$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا