ﻻ يوجد ملخص باللغة العربية
How does an initially homogeneous spin-polarization in a confined two-dimensional electron gas with Rashba spin-orbit coupling evolve in time? How does the relaxation time depend on system size? We study these questions for systems of a size that is much larger than the Fermi wavelength, but comparable and even shorter than the spin relaxation length. Depending on the confinement spin-relaxation may become faster or slower than in the bulk. An initially homogeneously polarized spin system evolves into a spiral pattern.
Using time-resolved Faraday rotation, the drift-induced spin-orbit Field of a two-dimensional electron gas in an InGaAs quantum well is measured. Including measurements of the electron mobility, the Dresselhaus and Rashba coefficients are determined
We investigated the spin dynamics of two-dimensional electrons in (001) GaAs/AlGaAs heterostructure using the time resolved Kerr rotation technique under a transverse magnetic field. The in-plane spin lifetime is found to be anisotropic below 150k du
We study the spin dynamics in a high-mobility two-dimensional electron gas confined in a GaAs/AlGaAs quantum well. An unusual magnetic field dependence of the spin relaxation is found: as the magnetic field becomes stronger, the spin relaxation time
Collective charge-density modes (plasmons) of the clean two-dimensional unpolarized electron gas are stable, for momentum conservation prevents them from decaying into single-particle excitations. Collective spin-density modes (spin plasmons) possess
We provide a theoretical framework for the electric field control of the electron spin in systems with diffusive electron motion. The approach is valid in the experimentally important case where both intrinsic and extrinsic spin-orbit interaction in