ﻻ يوجد ملخص باللغة العربية
The quasi two-dimensional magnetic BaNi$_{2}$V$_{2}$O$_{8}$ is studied by using high-resolution thermal expansion in magnetic fields up to 10 T applied along the c-axis. A slight increase of about 1 % of the three-dimensional antiferromagnetic ordering temperature $T_N$ is observed at 10 T. Positive and negative pressure dependencies of $T_N$, respectively, are inferred from the thermal expansion $alpha(T)$ for pressures applied along the $a$- and $c$-axes.
We have studied the magnetization and magnetoresistance of CeRu2Al10 in the applied magnetic field H along the c-axis up to ~ 55 T. The magnetization M at low temperatures shows an H-linear increase with a small slope of M/H than that for H // a-axis
We explore the spin states in the quantum spin chain compound SrCo$_{2}$V$_{2}$O$_{8}$ up to 14.9 T and down to 50 mK, using single-crystal neutron diffraction. Upon cooling in zero-field, antiferromagnetic (AFM) order of Neel type develops at $T_mat
We report a combined $^{115}$In NQR, $^{51}$V NMR and $mu$SR spectroscopic study of the low-temperature magnetic properties of InCu$_{2/3}$V$_{1/3}$O$_3$, a quasi-two dimensional (2D) compound comprising in the spin sector a honeycomb lattice of anti
High field electron spin resonance, nuclear magnetic resonance and magnetization studies addressing the ground state of the quasi two-dimensional spin-1/2 honeycomb lattice compound InCu{2/3}V{1/3}O{3} are reported. Uncorrelated finite size structura
High-field magnetization of the spin-$1/2$ antiferromagnet $alpha$-Cu$_2$V$_2$O$_7$ was measured in pulsed magnetic fields of up to 56 T in order to study its magnetic phase diagram. When the field was applied along the easy axis (the $a$-axis), two