ترغب بنشر مسار تعليمي؟ اضغط هنا

Stabilisation of the lattice-Boltzmann method using the Ehrenfests coarse-graining

129   0   0.0 ( 0 )
 نشر من قبل Alexander Gorban
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The lattice-Boltzmann method (LBM) and its variants have emerged as promising, computationally efficient and increasingly popular numerical methods for modelling complex fluid flow. However, it is acknowledged that the method can demonstrate numerical instabilities, e.g., in the vicinity of shocks. We propose a simple and novel technique to stabilise the lattice-Boltzmann method by monitoring the difference between microscopic and macroscopic entropy. Populations are returned to their equilibrium states if a threshold value is exceeded. We coin the name Ehrenfests steps for this procedure in homage to the vehicle that we use to introduce the procedure, namely, the Ehrenfests idea of coarse-graining. The one-dimensional shock tube for a compressible isothermal fluid is a standard benchmark test for hydrodynamic codes. We observe that, of all the LBMs considered in the numerical experiment with the one-dimensional shock tube, only the method which includes Ehrenfests steps is capable of suppressing spurious post-shock oscillations.



قيم البحث

اقرأ أيضاً

We revisit the classical stability versus accuracy dilemma for the lattice Boltzmann methods (LBM). Our goal is a stable method of second-order accuracy for fluid dynamics based on the lattice Bhatnager--Gross--Krook method (LBGK). The LBGK scheme can be recognised as a discrete dynamical system generated by free-flight and entropic involution. In this framework the stability and accuracy analysis are more natural. We find the necessary and sufficient conditions for second-order accurate fluid dynamics modelling. In particular, it is proven that in order to guarantee second-order accuracy the distribution should belong to a distinguished surface -- the invariant film (up to second-order in the time step). This surface is the trajectory of the (quasi)equilibrium distribution surface under free-flight. The main instability mechanisms are identified. The simplest recipes for stabilisation add no artificial dissipation (up to second-order) and provide second-order accuracy of the method. Two other prescriptions add some artificial dissipation locally and prevent the system from loss of positivity and local blow-up. Demonstration of the proposed stable LBGK schemes are provided by the numerical simulation of a 1D shock tube and the unsteady 2D-flow around a square-cylinder up to Reynolds number $mathcal{O}(10000)$.
We study the coarse-graining approach to derive a generator for the evolution of an open quantum system over a finite time interval. The approach does not require a secular approximation but nevertheless generally leads to a Lindblad-Gorini-Kossakows ki-Sudarshan generator. By combining the formalism with Full Counting Statistics, we can demonstrate a consistent thermodynamic framework, once the switching work required for the coupling and decoupling with the reservoir is included. Particularly, we can write the second law in standard form, with the only difference that heat currents must be defined with respect to the reservoir. We exemplify our findings with simple but pedagogical examples.
We present a method that exploits self-consistent simulation of coarse-grained and fine-grained models, in order to analyse properties of physical systems. The method uses the coarse-grained model to obtain a first estimate of the quantity of interes t, before computing a correction by analysing properties of the fine system. We illustrate the method by applying it to the Asakura-Oosawa (AO) model of colloid-polymer mixtures. We show that the liquid-vapour critical point in that system is affected by three-body interactions which are neglected in the corresponding coarse-grained model. We analyse the size of this effect and the nature of the three-body interactions. We also analyse the accuracy of the method, as a function of the associated computational effort.
We consider the application of fluctuation relations to the dynamics of coarse-grained systems, as might arise in a hypothetical experiment in which a system is monitored with a low-resolution measuring apparatus. We analyze a stochastic, Markovian j ump process with a specific structure that lends itself naturally to coarse-graining. A perturbative analysis yields a reduced stochastic jump process that approximates the coarse-grained dynamics of the original system. This leads to a non-trivial fluctuation relation that is approximately satisfied by the coarse-grained dynamics. We illustrate our results by computing the large deviations of a particular stochastic jump process. Our results highlight the possibility that observed deviations from fluctuation relations might be due to the presence of unobserved degrees of freedom.
137 - David Andrieux 2011
Lumping a Markov process introduces a coarser level of description that is useful in many contexts and applications. The dynamics on the coarse grained states is often approximated by its Markovian component. In this letter we derive finite-time boun ds on the error in this approximation. These results hold for non-reversible dynamics and for probabilistic mappings between microscopic and coarse grained states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا