ترغب بنشر مسار تعليمي؟ اضغط هنا

Collisional relaxation of Feshbach molecules and three-body recombination in 87Rb Bose-Einstein condensates

308   0   0.0 ( 0 )
 نشر من قبل Thorsten Koehler
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We predict the resonance enhanced magnetic field dependence of atom-dimer relaxation and three-body recombination rates in a $^{87}$Rb Bose-Einstein condensate (BEC) close to 1007 G. Our exact treatments of three-particle scattering explicitly include the dependence of the interactions on the atomic Zeeman levels. The Feshbach resonance distorts the entire diatomic energy spectrum causing interferences in both loss phenomena. Our two independent experiments confirm the predicted recombination loss over a range of rate constants that spans four orders of magnitude.

قيم البحث

اقرأ أيضاً

We present measurements of the loss-rate coefficients K_am and K_mm caused by inelastic atom-molecule and molecule-molecule collisions. A thermal cloud of atomic 87Rb is prepared in an optical dipole trap. A magnetic field is ramped across the Feshba ch resonance at 1007.4 G. This associates atom pairs to molecules. A measurement of the molecule loss at 1005.8 G yields K_am=2 10^-10 cm^3/s. Additionally, the atoms can be removed with blast light. In this case, the measured molecule loss yields K_mm=3 10^-10 cm^3/s.
We discuss the long range nature of the molecules produced in recent experiments on molecular Bose-Einstein condensation. The properties of these molecules depend on the full two-body Hamiltonian and not just on the states of the system in the absenc e of interchannel couplings. The very long range nature of the state is crucial to the efficiency of production in the experiments. Our many-body treatment of the gas accounts for the full binary physics and describes properly how these molecular condensates can be directly probed.
In a numerical experiment based on Gross-Pitaevskii formalism, we demonstrate unique topological quantum coherence in optically trapped Bose-Einstein condensates (BECs). Exploring the fact that vortices in rotating BEC can be pinned by a geometric ar rangement of laser beams, we show the parameter range in which vortex-antivortex molecules or multiquantum vortices are formed as a consequence of the optically imposed symmetry. Being low-energy states, we discuss the conditions for spontaneous nucleation of these unique molecules and their direct experimental observation, and provoke the potential use of the phase print of an antivortex or a multiquantum vortex when realized in unconventional circumstances.
The recombination of two split Bose-Einstein condensates on an atom chip is shown to result in heating which depends on the relative phase of the two condensates. This heating reduces the number of condensate atoms between 10 and 40% and provides a r obust way to read out the phase of an atom interferometer without the need for ballistic expansion. The heating may be caused by the dissipation of dark solitons created during the merging of the condensates.
We measure spin mixing of F=1 and F=2 spinor condensates of 87Rb atoms confined in an optical trap. We determine the spin mixing time to be typically less than 600 ms and observe spin population oscillations. The equilibrium spin configuration in the F=1 manifold is measured for different magnetic fields and found to show ferromagnetic behavior for low field gradients. An F=2 condensate is created by microwave excitation from F=1 manifold, and this spin-2 condensate is observed to decay exponentially with time constant 250 ms. Despite the short lifetime in the F=2 manifold, spin mixing of the condensate is observed within 50 ms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا