ﻻ يوجد ملخص باللغة العربية
We report a pronounced peak effect in the magnetization and the magnetocaloric coefficient in a single crystal of the superconductor Nb3Sn. As the origin of the magnetization peak effect in classical type-II superconductors is still strongly debated, we performed an investigation of its underlying thermodynamics. Calorimetric experiments performed during field sweeps at constant temperatures reveal that the sharp increase in the current density occurs concurrently with additional degrees of freedom in the specific heat due to thermal fluctuations and a liquid vortex phase. No latent heat due to a direct first-order melting of a Bragg glass phase into the liquid phase is found which we take as evidence for an intermediate glass phase with enhanced flux pinning. The Bragg glass phase can however be restored by a small AC field. In this case a first-order vortex melting transition with a clear hysteresis is found. In the absence of an AC field the intermediate glass phase is located within the field range of this hysteresis. This indicates that the peak effect is associated with the metastability of an underlying first-order vortex melting transition.
We have used small-angle-neutron-scattering (SANS) and ac magnetic susceptibility to investigate the global magnetic field H vs temperature T phase diagram of a single crystal Nb in which a first-order transition of Bragg-glass melting (disordering),
The vortex lattice in a Type II superconductor provides a versatile model system to investigate the order-disorder transition in a periodic medium in the presence of random pinning. Here, using scanning tunnelling spectroscopy in a weakly pinned Co0.
This paper presents the results of specific-heat and magnetization measurements, in particular their field-orientation dependence, on the first discovered heavy-fermion superconductor CeCu$_2$Si$_2$ ($T_{rm c} sim 0.6$ K). We discuss the superconduct
The different pinning strengths of the flux line lattice in the peak effect (PE) region of a polycrystalline sample of CeRu$_2$ with a superconducting transition temperature {$T_c = 6.1$ K} have been probed by means of magnetization measurements with
The high-energy kink or the waterfall effect seen in the photoemission spectra of the cuprates is suggestive of the coupling of the quasiparticles to a high energy bosonic mode with implications for the mechanism of superconductivity. Recent experime