ترغب بنشر مسار تعليمي؟ اضغط هنا

Reply to Comment on Existence of Internal Modes of sine-Gordon Kinks

62   0   0.0 ( 0 )
 نشر من قبل Angel (Anxo) Sanchez
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this reply to the comment by C. R. Willis, we show, by quoting his own statements, that the simulations reported in his original work with Boesch [Phys. Rev. B 42, 2290 (1990)] were done for kinks with nonzero initial velocity, in contrast to what Willis claims in his comment. We further show that his alleged proof, which assumes among other approximations that kinks are initially at rest, is not rigorous but an approximation. Moreover, there are other serious misconceptions which we discuss in our reply. As a consequence, our result that quasimodes do not exist in the sG equation [Phys. Rev. E 62, R60 (2000)] remains true.



قيم البحث

اقرأ أيضاً

We study whether or not sine-Gordon kinks exhibit internal modes or ``quasimodes. By considering the response of the kinks to ac forces and initial distortions, we show that neither intrinsic internal modes nor ``quasimodes exist in contrast to previ ous reports. However, we do identify a different kind of internal mode bifurcating from the bottom edge of the phonon band which arises from the discretization of the system in the numerical simulations, thus confirming recent predictions.
111 - Niurka R. Quintero , 2000
We analyze the diffusive motion of kink solitons governed by the thermal sine-Gordon equation. We analytically calculate the correlation function of the position of the kink center as well as the diffusion coefficient, both up to second-order in temp erature. We find that the kink behavior is very similar to that obtained in the overdamped limit: There is a quadratic dependence on temperature in the diffusion coefficient that comes from the interaction among the kink and phonons, and the average value of the wave function increases with $sqrt{t}$ due to the variance of the centers of individual realizations and not due to kink distortions. These analytical results are fully confirmed by numerical simulations.
In their comment on our work (ArXiv:1912.07056v1), Cavagna textit{et al.} raise several interesting points on the phenomenology of flocks of birds, and conduct additional data analysis to back up their points. In particular, they question the existen ce of rigid body rotations in flocks of birds. In this reply, we first clarify the notions of rigid body rotations, and of rigidity itself. Then, we justify why we believe that it is legitimate to wonder about their importance when studying the spatial correlations between speeds in flocks of birds.
Motivated by the recently developed duality between elasticity of a crystal and a symmetric tensor gauge theory by Pretko and Radzihovsky, we explore its classical analog, that is a dual theory of the dislocation-mediated melting of a two-dimensional crystal, formulated in terms of a higher derivative vector sine-Gordon model. It provides a transparent description of the continuous two-stage melting in terms of the renormalization-group relevance of two cosine operators that control the sequential unbinding of dislocations and disclinations, respectively corresponding to the crystal-to-hexatic and hexatic-to-isotropic fluid transitions. This renormalization-group analysis compactly reproduces seminal results of the Coulomb gas description, such as the flows of the elastic couplings and of the dislocation and disclination fugacities, as well the temperature dependence of the associated correlation lengths.
We consider the reflectionless transport of sine-Gordon solitons on a line. Transparent boundary conditions for the sine-Gordon equation on a line are derived using the so-called potential approach. Our numerical implementation of these novel boundar y conditions proves the absence of the backscattering in transmission of sine-Gordon solitons through the boundary of the considered finite domains.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا