ﻻ يوجد ملخص باللغة العربية
Weighted scale-free networks with topology-dependent interactions are studied. It is shown that the possible universality classes of critical behaviour, which are known to depend on topology, can also be explored by tuning the form of the interactions at fixed topology. For a model of opinion formation, simple mean field and scaling arguments show that a mapping $gamma=(gamma-mu)/(1-mu)$ describes how a shift of the standard exponent $gamma$ of the degree distribution can absorb the effect of degree-dependent pair interactions $J_{ij} propto (k_ik_j)^{-mu}$, where $k_i$ stands for the degree of vertex $i$. This prediction is verified by extensive numerical investigations using the cavity method and Monte Carlo simulations. The critical temperature of the model is obtained through the Bethe-Peierls approximation and with the replica technique. The mapping can be extended to nonequilibrium models such as those describing the spreading of a disease on a network.
We study the dynamics of networks with coupling delay, from which the connectivity changes over time. The synchronization properties are shown to depend on the interplay of three time scales: the internal time scale of the dynamics, the coupling dela
We study synchronization dynamics of a population of pulse-coupled oscillators. In particular, we focus our attention in the interplay between networks topological disorder and its synchronization features. Firstly, we analyze synchronization time $T
In real networks, the dependency between nodes is ubiquitous; however, the dependency is not always complete and homogeneous. In this paper, we propose a percolation model with weak and heterogeneous dependency; i.e., dependency strengths could be di
Models for non-unitary quantum dynamics, such as quantum circuits that include projective measurements, have been shown to exhibit rich quantum critical behavior. There are many complementary perspectives on this behavior. For example, there is a kno
We uncover a local order parameter for measurement-induced phase transitions: the average entropy of a single reference qubit initially entangled with the system. Using this order parameter, we identify scalable probes of measurement-induced critical