ﻻ يوجد ملخص باللغة العربية
We study edges states of graphene ribbons in the quantized Hall regime, and show that they can be described within a continuum model (the Dirac equation) when appropriate boundary conditions are adopted. The two simplest terminations, zigzag and armchair edges, are studied in detail. For zigzag edges, we find that the lowest Landau level states terminate in two types of edge states, dispersionless and current-carrying surface states. The latter involve components on different sublattices that may be separated by distances far greater than the magnetic length. For armchair edges, the boundary conditions are met by admixing states from different valleys, and we show that this leads to a single set of edges states for the lowest Landau level and two sets for all higher Landau levels. In both cases, the resulting Hall conductance step for the lowest Landau level is half that between higher Landau levels, as observed in experiment.
We study the low energy edge states of bilayer graphene in a strong perpendicular magnetic field. Several possible simple boundaries geometries related to zigzag edges are considered. Tight-binding calculations reveal three types of edge state behavi
A quantum Hall edge state provides a rich foundation to study electrons in 1-dimension (1d) but is limited to chiral propagation along a single direction. Here, we demonstrate a versatile platform to realize new 1d systems made by combining quantum H
We propose a surface-edge state theory for half quantized Hall conductance of surface states in topological insulators. The gap opening of a single Dirac cone for the surface states in a weak magnetic field is demonstrated. We find a new surface stat
We examine the photonic spin Hall effect (SHE) in a graphene-substrate system with the presence of external magnetic field. In the quantum Hall regime, we demonstrate that the in-plane and transverse spin-dependent splittings in photonic SHE exhibit
The Hall effect, the anomalous Hall effect and the spin Hall effect are fundamental transport processes in solids arising from the Lorentz force and the spin-orbit coupling respectively. The quant