ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermal conductivity in the vicinity of the quantum critical endpoint in Sr3Ru2O7

73   0   0.0 ( 0 )
 نشر من قبل Filip Ronning
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Thermal conductivity of Sr3Ru2O7 was measured down to 40 mK and at magnetic fields through the quantum critical endpoint at H_c = 7.85 T. A peak in the electrical resistivity as a function of field was mimicked by the thermal resistivity. In the limit as T -> 0 K we find that the Wiedemann-Franz law is satisfied to within 5% at all fields, implying that there is no breakdown of the electron despite the destruction of the Fermi liquid state at quantum criticality. A significant change in disorder (from $rho_0$(H=0T) = 2.1 $muOmega$ cm to 0.5 $muOmega$ cm) does not influence our conclusions. At finite temperatures, the temperature dependence of the Lorenz number is consistent with ferromagnetic fluctuations causing the non-Fermi liquid behavior as one would expect at a metamagnetic quantum critical endpoint.

قيم البحث

اقرأ أيضاً

The thermal conductivity of YbRh2Si2 has been measured down to very low temperatures under field in the basal plane. An additional channel for heat transport appears below 30 mK, both in the antiferromagnetic and paramagnetic states, respectively bel ow and above the critical field suppressing the magnetic order. This excludes antiferromagnetic magnons as the origin of this additional contribution to thermal conductivity. Moreover, this low temperature contribution prevails a definite conclusion on the validity or violation of the Wiedemann-Franz law at the field-induced quantum critical point. At high temperature in the paramagnetic state, the thermal conductivity is sensitive to ferromagnetic fluctuations, previously observed by NMR or neutron scattering and required for the occurrence of the sharp electronic spin resonance fracture.
The behaviour of matter near zero temperature continuous phase transitions, or quantum critical points (QCPs) is a central topic of study in condensed matter physics. In fermionic systems, fundamental questions remain unanswered: the nature of the qu antum critical regime is unclear because of the apparent breakdown of the concept of the quasiparticle, a cornerstone of existing theories of strongly interacting metals. Even less is known experimentally about the formation of ordered phases from such a quantum critical soup. Here, we report a study of the specific heat across the phase diagram of the model system Sr3Ru2O7, which features an anomalous phase whose transport properties are consistent with those of an electronic nematic. We show that this phase, which exists at low temperatures in a narrow range of magnetic fields, forms directly from a quantum critical state, and contains more entropy than mean-field calculations predict. Our results suggest that this extra entropy is due to remnant degrees of freedom from the highly entropic state above T_c. The associated quantum critical point, which is concealed by the nematic phase, separates two Fermi liquids, neither of which has an identifiable spontaneously broken symmetry, but which likely differ in the topology of their Fermi surfaces.
The angular, temperature and magnetic field dependences of Hall resistance roH for the rare-earth dodecaboride solid solutions Tm1-xYbxB12 have been studied in a wide vicinity of the quantum critical point (QCP) xC~0.3. The measurements performed in the temperature range 1.9-300 K on high quality single crystals allowed to find out for the first time in these fcc compounds both an appearance of the second harmonic contribution in ro2H at QCP and its enhancement under the Tm to ytterbium substitution and/or with increase of external magnetic field. When the Yb concentration x increases a negative maximum of a significant amplitude was shown to appear on the temperature dependences of Hall coefficient RH(T) for the Tm1-xYbxB12 compounds. Moreover, a complicated activation type behavior of the Hall coefficient is observed at intermediate temperatures for x>0.5 with activation energies Eg~200K and Ea~55-75K in combination with the sign inversion of RH(T) at low temperatures in the coherent regime. The density of states renormalization effects are analyzed within the variation of Yb concentration and the features of the charge transport in various regimes (charge gap formation, intra-gap manybody resonance and coherent regime) are discussed in detail in Tm1-xYbxB12 solid solutions.
A quantum critical endpoint related to a metamagnetic transition causes distinct signatures in the thermodynamic quantities of a compound. We argue that, irrespective of the microscopic details of the considered material, the diverging differential s usceptibility combined with the Ising symmetry of the endpoint give rise to a number of characteristic metamagnetic phenomena. In the presence of a magnetoelastic coupling, one finds a correspondence of susceptibility, magnetostriction and compressibility and, as a result, a pronounced crystal softening, a diverging Grueneisen parameter, a sign change of thermal expansion alpha(H), and a minimum in the specific heat coefficient gamma(H). We illustrate these signatures and their relation on the metamagnetic crossover at 8 T in the prototypical heavy-fermion system CeRu2Si2.
We report measurements of quantum oscillations detected in the putative nematic phase of Sr3Ru2O7. Significant improvements in sample purity enabled the resolution of small amplitude dHvA oscillations between two first order metamagnetic transitions delimiting the phase. Two distinct frequencies were observed, and their amplitudes follow the normal Lifshitz-Kosevich profile. The Fermi surface sheets seem to correspond to a subset of those detected outside the phase. Variations of the dHvA frequencies are explained in terms of a chemical potential shift produced by reaching a peak in the density of states, and an anomalous field dependence of the oscillatory amplitude provides information on domains.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا