ترغب بنشر مسار تعليمي؟ اضغط هنا

Exact Study of the 1D Boson Hubbard Model with a Superlattice Potential

52   0   0.0 ( 0 )
 نشر من قبل Valy Rousseau
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use Quantum Monte Carlo simulations and exact diagonalization to explore the phase diagram of the Bose-Hubbard model with an additional superlattice potential. We first analyze the properties of superfluid and insulating phases present in the hard-core limit where an exact analytic treatment is possible via the Jordan-Wigner transformation. The extension to finite on-site interaction is achieved by means of quantum Monte Carlo simulations. We determine insulator/superfluid phase diagrams as functions of the on-site repulsive interaction, superlattice potential strength, and filling, finding that insulators with fractional occupation numbers, which are present in the hard-core case, extend deep into the soft-core region. Furthermore, at integer fillings, we find that the competition between the on-site repulsion and the superlattice potential can produce a phase transition between a Mott insulator and a charge density wave insulator, with an intermediate superfluid phase. Our results are relevant to the behavior of ultracold atoms in optical superlattices which are beginning to be studied experimentally.

قيم البحث

اقرأ أيضاً

We provide a new perspective on the pseudogap physics for attractive fermions as described by the three-dimensional Hubbard model. The pseudogap in the single-particle spectral function, which occurs for temperatures above the critical temperature $T _c$ of the superfluid transition, is often interpreted in terms of preformed, uncondensed pairs. Here we show that the occurrence of pseudogap physics can be consistently understood in terms of local excitations which lead to a splitting of the quasiparticle peak for sufficiently large interaction. This effect becomes prominent at intermediate and high temperatures when the quantum mechanical hopping is incoherent. We clarify the existence of a conjectured temperature below which pseudogap physics is expected to occur. Our results are based on approximating the physics of the three-dimensional Hubbard model by dynamical mean field theory calculations and a momentum independent self-energy. Our predictions can be tested with ultracold atoms in optical lattices with currently available temperatures and spectroscopic techniques.
89 - Fei Lin , T. A. Maier , 2015
The extended Bose-Hubbard model captures the essential properties of a wide variety of physical systems including ultracold atoms and molecules in optical lattices, Josephson junction arrays, and certain narrow band superconductors. It exhibits a ric h phase diagram including a supersolid phase where a lattice solid coexists with a superfluid. We use quantum Monte Carlo to study the supersolid part of the phase diagram of the extended Bose-Hubbard model on the simple cubic lattice. We add disorder to the extended Bose-Hubbard model and find that the maximum critical temperature for the supersolid phase tends to be suppressed by disorder. But we also find a narrow parameter window in which the supersolid critical temperature is enhanced by disorder. Our results show that supersolids survive a moderate amount of spatial disorder and thermal fluctuations in the simple cubic lattice.
In this paper we present for the first time the exact solution in the narrow-band limit of the 1D extended Hubbard model with nearest-neighbour spin-spin interactions described by an exchange constant J. An external magnetic field h is also taken int o account. This result has been obtained in the framework of the Greens functions formalism, using the Composite Operator Method. By means of this theoretical background, we have studied some relevant features such as double occupancy, magnetization, spin-spin and charge-charge correlation functions and derived a phase diagram for both ferro (J>0) and anti-ferro (J<0) coupling in the limit of zero temperature. We also report a study on density of states, specific heat, charge and spin susceptibilities. In the limit of zero temperature, we show that the model exhibits a very rich phase diagram characterized by different magnetic orders and by the coexistence of charge and spin orderings at commensurate filling. Moreover, our analysis at finite temperature of density of states and response functions shows the presence of low-temperature charge and spin excitations near the phase boundaries.
We numerically investigate 1D Bose-Hubbard chains with onsite disorder by means of exact diagonalization. A primary focus of our work is on characterizing Fock-space localization in this model from the single-particle perspective. For this purpose, w e compute the one-particle density matrix (OPDM) in many-body eigenstates. We show that the natural orbitals (the eigenstates of the OPDM) are extended in the ergodic phase and real-space localized when one enters into the MBL phase. Furthermore, the distributions of occupations of the natural orbitals can be used as measures of Fock-space localization in the respective basis. Consistent with previous studies, we observe signatures of a transition from the ergodic to the many-body localized (MBL) regime when increasing the disorder strength. We further demonstrate that Fock-space localization, albeit weaker, is also evidently present in the distribution of the physical densities in the MBL regime, both for soft- and hardcore bosons. Moreover, the full distribution of the densities of the physical particles provides a one-particle measure for the detection of the ergodic-MBL transition which could be directly accessed in experiments with ultra-cold gases.
An exact analytical diagonalization is used to solve the two dimensional Extended Hubbard Model for system with finite size. We have considered an Extended Hubbard Model (EHM) including on-site and off-site interactions with interaction energy U and V respectively, for square lattice containing 4*4 sites at one-eighth filling with periodic boundary conditions, recently treated by Kovacs et al [1]. Taking into account the symmetry properties of this square lattice and using a translation linear operator, we have constructed a r-space basis, only, with 85 state-vectors which describe all possible distributions for four electrons in the 4*4 square lattice. The diagonalization of the 85*85 matrix energy allows us to study the local properties of the above system as function of the on-site and off-site interactions energies, where, we have shown that the off-site interaction encourages the existence of the double occupancies at the first exited state and induces supplementary conductivity of the system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا