ﻻ يوجد ملخص باللغة العربية
A neutral impurity atom immersed in a dilute Bose-Einstein condensate (BEC) can have a bound ground state in which the impurity is self-localized. In this small polaron-like state, the impurity distorts the density of the surrounding BEC, thereby creating the self-trapping potential minimum. We describe the self-localization in a strong coupling approach.
We theoretically examine three-well interferometry in Bose-Einstein condensates using adiabatic passage. Specifically, we demonstrate that a fractional coherent transport adiabatic passage protocol enables stable spatial splitting in the presence of
We investigate the time taken for global collapse by a dipolar Bose-Einstein condensate. Two semi-analytical approaches and exact numerical integration of the mean-field dynamics are considered. The semi-analytical approaches are based on a Gaussian
A toolbox for the quantum simulation of polarons in ultracold atoms is presented. Motivated by the impressive experimental advances in the area of ultracold atomic mixtures, we theoretically study the problem of ultracold atomic impurities immersed i
We describe the ground state of a large, dilute, neutral atom Bose- Einstein condensate (BEC) doped with N strongly coupled mutually indistinguishable, bosonic neutral atoms (referred to as impurity) in the polaron regime where the BEC density respon
We investigate the polarons formed by immersing a spinor impurity in a ferromagnetic state of $F=1$ spinor Bose-Einstein condensate. The ground state energies and effective masses of the polarons are calculated in both weak-coupling regime and strong