ﻻ يوجد ملخص باللغة العربية
A two-fluid model is proposed to describe the transport properties of granular superconductors. Using the resistively shunted junction model and some aspects of the two-level system theory, a statistical model is developed which takes into account the ratio between the number of normal and superconducting electrons carrying the applied current. The theoretical model reveals excellent agreement when compared to transport properties of four high-Tc superconductors. The results suggest that the two-fluid model is independent of the sample composition, critical temperature and whether the superconducting compound is electron or hole-doped.
We present a systematic study of the response properties of two-band (multi-gap) superconductors with spin-singlet (s-wave) pairing correlations, which are assumed to be caused by both intraband (lambda_{ii}, i=1,2) and interband (lambda_{12}) pairin
A quantum pseudo-spin model with random spin sizes is introduced to study the effects of charging-energy disorder on the superconducting transition in granular superconducting materials. Charging-energy effects result from the small electrical capaci
Evidence from NMR of a two-component spin system in cuprate high-$T_c$ superconductors is shown to be paralleled by similar evidence from the electronic entropy so that a two-component quasiparticle fluid is implicated. We propose that this two-compo
Following a short discussion of the granular model for an inhomogeneous superconductor, we review the Uemura and Homes correlations and show how both follow in two limits of a simple granular superconductor model. Definite expressions are given for t
We propose the existence of an electric-field induced nonlinear magnetization in a weakly coupled granular superconductor due to time-parity violation. As the field increases the induced magnetization passes from para- to dia-magnetic behavior. We di