ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal Magnetic-Field-Driven Metal-Insulator-Metal Transformations in Graphite and Bismuth

133   0   0.0 ( 0 )
 نشر من قبل Yakov Kopelevich
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Applied magnetic field induces metal - insulator and re-entrant insulator-metal transitions in both graphite and rhombohedral bismuth. The corresponding transition boundaries plotted on the magnetic field - temperature (B - T) plane nearly coincide for these semimetals and can be best described by power laws T ~ (B - B_c)^k, where B_c is a critical field at T = 0 and k = 0.45 +/- 0.05. We show that insulator-metal-insulator (I-M-I) transformations take place in the Landau level quantization regime and illustrate how the IMT in quasi-3D graphite transforms into a cascade of I-M-I transitions, related to the quantum Hall effect in quasi-2D graphite samples. We discuss the possible coupling of superconducting and excitonic correlations with the observed phenomena, as well as the signatures of quantum phase transitions associated with the M-I and I-M transformations.



قيم البحث

اقرأ أيضاً

This article reviews recent results of magnetotransport and magnetization measurements performed on highly oriented pyrolitic graphite (HOPG) and single crystalline Kish graphite samples. Both metal-insulator and insulator-metal transitions driven by magnetic field applied perpendicular to the basal planes of graphite were found and discussed in the light of relevant theories. The results provide evidence for the existence of localized superconducting domains in HOPG even at room temperature, as well as an interplay between superconducting and ferromagnetic correlations. We also present experimental evidence for the superconductivity occurrence in graphite-sulfur composites.
A magnetic-field-driven transition from metallic- to semiconducting-type behavior in the basal-plane resistance takes place in highly oriented pyrolytic graphite at a field $H_c sim 1~$kOe applied along the hexagonal c-axis. The analysis of the data reveals a striking similarity between this transition and that measured in thin-film superconductors and Si MOSFETs. However, in contrast to those materials, the transition in graphite is observable at almost two orders of magnitude higher temperatures.
A detailed magnetoresistance study of bulk and microflake samples of highly oriented pyrolytic graphite with a thickness of 25 $mu$m to 23~nm reveals that the usually observed field-induced metal-insulator and electronic phase transitions vanish in t hinner samples. The observed suppression is accompanied by orders of magnitude decrease of the magnetoresistance and of the amplitude of the Shubnikov-de-Haas oscillations. The overall behavior is related to the decrease in the quantity of two-dimensional interfaces between crystalline regions of the same and different stacking orders present in graphite samples. Our results indicate that these field-induced transitions are not intrinsic to the ideal graphite structure and, therefore, a relevant portion of the published interpretations should be reconsidered.
204 - M. Zhu , J. Peng , T. Zou 2018
We present a new type of colossal magnetoresistance (CMR) arising from an anomalous collapse of the Mott insulating state via a modest magnetic field in a bilayer ruthenate, Ti-doped Ca$_3$Ru$_2$O$_7$. Such an insulator-metal transition is accompanie d by changes in both lattice and magnetic structures. Our findings have important implications because a magnetic field usually stabilizes the insulating ground state in a Mott-Hubbard system, thus calling for a deeper theoretical study to reexamine the magnetic field tuning of Mott systems with magnetic and electronic instabilities and spin-lattice-charge coupling. This study further provides a model approach to search for CMR systems other than manganites, such as Mott insulators in the vicinity of the boundary between competing phases.
373 - J. Bobroff , G. Lang , H. Alloul 2005
Co and Na NMR are used to probe the local susceptibility and charge state of the two Co sites of the Na-ordered orthorhombic Na0.5CoO2. Above T_N=86K, both sites display a similar T-dependence of the spin shift, suggesting that there is no charge seg regation into Co3+ and Co4+ sites. Below T_N, the magnetic long range commensurate order found is only slightly affected by the metal-insulator transition (MIT) at T_MIT=51K. Furthermore, the electric field gradient at the Co site does not change at these transitions, indicating the absence of charge ordering. All these observations can be explained by successive SDW induced by two nestings of the Fermi Surface specific to the x=0.5 Na-ordering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا