ترغب بنشر مسار تعليمي؟ اضغط هنا

Re-entrant melting and freezing in a model system of charged colloids

90   0   0.0 ( 0 )
 نشر من قبل Paddy Royall
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We studied the phase behavior of charged and sterically stabilized colloids using confocal microscopy in a less polar solvent (dielectric constant 5.4). Upon increasing the colloid volume fraction we found a transition from a fluid to a body centered cubic crystal at 0.0415+/-0.0005, followed by re-entrant melting at 0.1165+/-0.0015. A second crystal of different symmetry, random hexagonal close-packed, was formed at a volume fraction around 0.5, similar to that of hard spheres. We attribute the intriguing phase behavior to particle interactions that depend strongly on volume fraction, mainly due to changes in the colloid charge. In this low polarity system the colloids acquire charge through ion adsorption. The low ionic strength leads to fewer ions per colloid at elevated volume fractions and consequently a density-dependent colloid charge.



قيم البحث

اقرأ أيضاً

Confinement can have a dramatic effect on the behavior of all sorts of particulate systems and it therefore is an important phenomenon in many different areas of physics and technology. Here, we investigate the role played by the softness of the conf ining potential. Using grand canonical Monte Carlo simulations, we determine the phase diagram of three-dimensional hard spheres that in one dimension are constrained to a plane by a harmonic potential. The phase behavior depends strongly on the density and on the stiffness of the harmonic confinement. Whilst we find the familiar sequence of confined hexagonal and square-symmetric packings, we do not observe any of the usual intervening ordered phases. Instead, the system phase separates under strong confinement, or forms a layered re-entrant liquid phase under weaker confinement. It is plausible that this behavior is due to the larger positional freedom in a soft confining potential and to the contribution that the confinement energy makes to the total free energy. The fact that specific structures can be induced or suppressed by simply changing the confinement conditions (e.g. in a dielectrophoretic trap) is important for applications that involve self-assembled structures of colloidal particles.
Re-entrant melting (in which a substances melting point starts to decrease beyond a certain pressure) is believed to be an unusual phenomenon. Among the elements, it has so far only been observed in a very limited number of species, e.g., the alkali metals. Our density functional theory calculations reveal that this behavior actually extends beyond alkali metals to include magnesium, which also undergoes re-entrant melting, though at the much higher pressure of ~300 GPa. We find that the origin of re-entrant melting is the faster softening of interatomic interactions in the liquid phase than in the solid, as pressure rises. We propose a simple approach to estimate pressure-volume relations and show that this characteristic softening pattern is widely observed in metallic elements. We verify this prediction in the case of aluminum by finding re-entrant melting at ~4000 GPa. These results suggest that re-entrant melting may be a more universal feature than previously thought.
We investigate the behavior of hydrated sulfonated polysulfones over a range of ion contents through differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and molecular dynamics (MD) simulations. Experimental eviden ce shows that at comparable ion contents, the spacing between the ionic groups along the polymer backbone can significantly impact the amount of melting water present in the polymer. When we only consider water molecules that can hydrogen bond to four neighboring water molecules as the melting water, the MD simulation results are found to agree with the experimental data. The states of water measured by DSC can therefore be described as aggregated (or bulk-like) for the melting component, and isolated for the nonmelting part. Using this physical picture, a polymer with more aggregated ions has a higher content of melting water, while a polymer at the same ion content but with more dispersed ions has a lower content of melting water. Therefore, ions should be well dispersed to minimize the amount of bulk-like water in ionic polymer membranes.
We report the results of neutron diffraction, ac and dc magnetization, heat-capacity, complex permittivity, and pyrocurrent measurements on an oxide, Li3NiRuO5, hitherto not paid much attention in the literature, except for a previous report on its p romising electrochemical performance. We emphasize on the following findings: (i) Observation of re-entrant spin-glass behavior; that is, this oxide undergoes ferrilmagnetic ordering below 8- K, entering spin-glass regime around 12 K. (ii) There is no prominent feature in the complex dielectric permittivity (in particular, at the magnetic transitions) in the absence of external magnetic field, indicative of the absence of ferroelectricity. However, there is a distinct evidence for magneto-dielectric (MDE) coupling. The sign of MDE coupling also changes as the sample is cooled from ferrimagnetic state to spin-glass regime. (iii) There are pyroelectric anomalies in the vicinity of 30-70 K, presumably from thermally stimulated depolarization current.
63 - Hossein Nili , Ali Naji 2018
We use a continuum model to report on the behavior of a dilute suspension of chiral swimmers subject to externally imposed shear in a planar channel. Swimmer orientation in response to the imposed shear can be characterized by two distinct phases of behavior, corresponding to unimodal or bimodal distribution functions for swimmer orientation along the channel. These phases indicate the occurrence (or not) of a population splitting phenomenon changing the swimming direction of a macroscopic fraction of active particles to the exact opposite of that dictated by the imposed flow. We present a detailed quantitative analysis elucidating the complexities added to the population splitting behavior of swimmers when they are chiral. In particular, the transition from unimodal to bimodal and vice versa are shown to display a re-entrant behavior across the parameter space spanned by varying the chiral angular speed. We also present the notable effects of particle aspect ratio and self-propulsion speed on system phase behavior and discuss potential implications of our results in applications such as swimmer separation/sorting.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا