ترغب بنشر مسار تعليمي؟ اضغط هنا

Localized versus itinerant magnetic moments in Na0.72CoO2

52   0   0.0 ( 0 )
 نشر من قبل Jorge L. Gavilano
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on experimental 59Co-NMR data in the temperature range between 0.1 and 300 K, we address the problem of the character of the Co 3d-electron based magnetism in Na0.7CoO2. Temperature dependent 59Co-NMR spectra reveal different Co environments below 300 K and their differentiation increases with decreasing temperature. We show that the 23Na- and 59Co-NMR data may consistently be interpreted by assuming that below room temperature the Co 3d-electrons are itinerant. Their magnetic interaction appears to favor an antiferromagnetic coupling, and we identify a substantial orbital contribution corb to the d-electron susceptibility. At low temperatures corb seems to acquire some temperature dependence, suggesting an increasing influence of spin-orbit coupling. The temperature dependence of the spin-lattice relaxation rate T1-1(T) confirms significant variations in the dynamics of this electronic subsystem between 200 and 300K, as previously suggested. Below 200 K, Na0.7CoO2 may be viewed as a weak antiferromagnet with TN below 1 K but this scenario still leaves a number of open questions.



قيم البحث

اقرأ أيضاً

232 - Yu Liu , Ye Yuan , Fang Liu 2017
Elucidating the interaction between magnetic moments and itinerant carriers is an important step to spintronic applications. Here, we investigate magnetic and transport properties in d0 ferromagnetic SiC single crystals prepared by postimplantation p ulsed laser annealing. Magnetic moments are contributed by the p states of carbon atoms, but their magnetic circular dichroism is different from that in semi-insulating SiC samples. The anomalous Hall effect and negative magnetoresistance indicate the influence of d0 spin order on free carriers. The ferromagnetism is relatively weak in N-implanted SiC compared with that in Al-implanted SiC after annealing. The results suggest that d0 magnetic moments and itinerant carriers can interact with each other, which will facilitate the development of SiC spintronic devices with d0 ferromagnetism.
The evolution of the electronic structure and magnetic properties with Co substitution for Fe in the solid solution Fe$_{1-x}$Co$_x$Ga$_3$ was studied by means of electrical resistivity, magnetization, ab-initio band structure calculations, and nucle ar spin-lattice relaxation $1/T_1$ of the $^{69,71}$Ga nuclei. Temperature dependencies of the electrical resistivity reveal that the evolution from the semiconducting to the metallic state in the Fe$_{1-x}$Co$_x$Ga$_3$ system occurs at $0.025<x<0.075$. The $^{69,71}(1/T_1)$ was studied as a function of temperature in a wide temperature range of $2!-!300$ K for the concentrations $x = 0.0,$ $0.5,$ and $1.0$. In the parent semiconducting compound FeGa$_3$, the temperature dependence of the $^{69}(1/T_1)$ exhibits a huge maximum at about $T!sim!6$ K indicating the existence of in-gap states. The opposite binary compound, CoGa$_3$, demonstrates a metallic Korringa behavior with $1/T_1$ $propto T$. In Fe$_{0.5}$Co$_{0.5}$Ga$_3$, the relaxation is strongly enhanced due to spin fluctuations and follows $1/T_1propto T^{1/2}$, which is a unique feature of weakly and nearly antiferromagnetic metals. This itinerant antiferromagnetic behavior contrasts with both magnetization measurements, showing localized magnetism with a relatively low effective moment of about 0.7 $mu_B$/f.u., and ab initio band structure calculations, where a ferromagnetic state with an ordered moment of 0.5 $mu_B$/f.u. is predicted. The results are discussed in terms of the interplay betwen the localized and itinerant magnetizm including in-gap states and spin fluctuations.
Using a cluster extension of the dynamical mean-field theory (CDMFT) we map out the magnetic phase diagram of the anisotropic square lattice Hubbard model with nearest-neighbor intrachain $t$ and interchain $t_{perp}$ hopping amplitudes at half-filli ng. A fixed value of the next-nearest-neighbor hopping $t=-t_{perp}/2$ removes the nesting property of the Fermi surface and stabilizes a paramagnetic metal phase in the weak-coupling regime. In the isotropic and moderately anisotropic regions, a growing spin entropy in the metal phase is quenched out at a critical interaction strength by the onset of long-range antiferromagnetic (AF) order of preformed local moments. It gives rise to a first-order metal-insulator transition consistent with the Mott-Heisenberg picture. In contrast, a strongly anisotropic regime $t_{perp}/tlesssim 0.3$ displays a quantum critical behavior related to the continuous transition between an AF metal phase and the AF insulator. Hence, within the present framework of CDMFT, the opening of the charge gap is magnetically driven as advocated in the Slater picture. We also discuss how the lattice-anisotropy-induced evolution of the electronic structure on a metallic side of the phase diagram is tied to the emergence of quantum criticality.
Many theories published in the last decade propose that either ordered or disordered local moments are present in elemental plutonium at low temperatures. We present new experimental data and review previous experimental results. None of the experime nts provide any evidence for ordered or disordered magnetic moments (either static or dynamic) in plutonium at low temperatures, in either the alpha- or delta-phases. The experiments presented and discussed are magnetic susceptibility,electrical resistivity, NMR, specific heat, and both elastic and inelastic neutronscattering. Many recent calculations correctly predict experimentally observed atomic volumes, including that of delta-Pu. These calculations achieve observed densities by the localization of electrons, which then give rise to magnetic moments. However, localized magnetic moments have never been observed experimentally in Pu. A theory is needed that is in agreement with all the experimental observations. Two theories are discussed that might provide understanding of the ensemble of unusual properties of Pu, including the absence of experimental evidence for localized magnetic moments; an issue that has persisted for over 50 years.
A direct and element-specific measurement of the local Fe spin moment has been provided by analyzing the Fe 3s core level photoemission spectra in the parent and optimally doped CeFeAsO1-xFx (x = 0, 0.11) and Sr(Fe1 xCox)2As2 (x = 0, 0.10) pnictides. The rapid time scales of the photoemission process allowed the detection of large local spin moments fluctuating on a 10-15 s time scale in the paramagnetic, anti-ferromagnetic and superconducting phases, indicative of the occurrence of ubiquitous strong Hunds magnetic correlations. The magnitude of the spin moment is found to vary significantly among different families, 1.3 muB in CeFeAsO and 2.1 muB in SrFe2As2. Surprisingly, the spin moment is found to decrease considerably in the optimally doped samples, 0.9 muB in CeFeAsO0.89F0.11 and 1.3 muB in Sr(Fe0.9Co0.1)2As2. The strong variation of the spin moment against doping and material type indicates that the spin moments and the motion of itinerant electrons are influenced reciprocally in a self-consistent fashion, reflecting the strong competition between the antiferromagnetic super-exchange interaction among the spin moments and the kinetic energy gain of the itinerant electrons in the presence of a strong Hunds coupling. By describing the evolution of the magnetic correlations concomitant with the appearance of superconductivity, these results constitute a fundamental step toward attaining a correct description of the microscopic mechanisms shaping the electronic properties in the pnictides, including magnetism and high temperature superconductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا