ترغب بنشر مسار تعليمي؟ اضغط هنا

Focused-ion-beam milling based nanostencil mask fabrication for spin transfer torque studies

53   0   0.0 ( 0 )
 نشر من قبل Barbaros \\\"Ozyilmaz
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Focused-ion-beam milling is used to fabricate nanostencil masks suitable for the fabrication of magnetic nanostructures relevant for spin transfer torque studies. Nanostencil masks are used to define the device dimensions prior to the growth of the thin film stack. They consist of a wet etch resistant top layer and an insulator on top of a pre-patterned bottom electrode. The insulator supports a hard mask and gives rise to an undercut by its selective etching. The approach is demonstrated by fabricating current perpendicular to the plane Co/Cu/Co nanopillar junctions, which exhibit current-induced magnetization dynamics.


قيم البحث

اقرأ أيضاً

We calculate the spin-transfer torque in Fe/MgO/Fe tunnel junctions and compare the results to those for all-metallic junctions. We show that the spin-transfer torque is interfacial in the ferromagnetic layer to a greater degree than in all-metallic junctions. This result originates in the half metallic behavior of Fe for the $Delta_1$ states at the Brillouin zone center; in contrast to all-metallic structures, dephasing does not play an important role. We further show that it is possible to get a component of the torque that is out of the plane of the magnetizations and that is linear in the bias. However, observation of such a torque requires highly ideal samples. In samples with typical interfacial roughness, the torque is similar to that in all-metallic multilayers, although for different reasons.
A focused ion beam is used to mill side holes in air-silica structured fibres. By way of example, side holes are introduced in two types of air-structured fibres (1) a photonic crystal four-ring fibre and (2) a 6-hole single ring step index structured fibre.
105 - F. Lacour 2008
We report on two novel ways for patterning Lithium Niobate (LN) at submicronic scale by means of focused ion beam (FIB) bombardment. The first method consists of direct FIB milling on LiNbO3 and the second one is a combination of FIB milling on a dep osited metallic layer and subsequent RIE (Reactive Ion Etching) etching. FIB images show in both cases homogeneous structures with well reproduced periodicity. These methods open the way to the fabrication of photonic crystals on LiNbO3 substrates.
We investigate an interfacial spin-transfer torque and $beta$-term torque with alternating current (AC) parallel to a magnetic interface. We find that both torques are resonantly enhanced as the AC frequency approaches to the exchange splitting energ y. We show that this resonance allows us to estimate directly the interfacial exchange interaction strength from the domain wall motion. We also find that the $beta$-term includes an unconventional contribution which is proportional to the time derivative of the current and exists even in absence of any spin relaxation processes.
We report the theoretical investigation of noise spectrum of spin current and spin transfer torque for non-colinear spin polarized transport in a spin-valve device which consists of normal scattering region connected by two ferromagnetic electrodes. Our theory was developed using non-equilibrium Greens function method and general non-linear $S^sigma-V$ and $S^tau-V$ relations were derived as a function of angle $theta$ between magnetization of two leads. We have applied our theory to a quantum dot system with a resonant level coupled with two ferromagnetic electrodes. It was found that for the MNM system, the auto-correlation of spin current is enough to characterize the fluctuation of spin current. For a system with three ferromagnetic layers, however, both auto-correlation and cross-correlation of spin current are needed to characterize the noise spectrum of spin current. Furthermore, the spin transfer torque and the torque noise were studied for the MNM system. For a quantum dot with a resonant level, the derivative of spin torque with respect to bias voltage is proportional to $sintheta$ when the system is far away from the resonance. When the system is near the resonance, the spin transfer torque becomes non-sinusoidal function of $theta$. The derivative of noise spectrum of spin transfer torque with respect to the bias voltage $N_tau$ behaves differently when the system is near or far away from the resonance. Specifically, the differential shot noise of spin transfer torque $N_tau$ is a concave function of $theta$ near the resonance while it becomes convex function of $theta$ far away from resonance. For certain bias voltages, the period $N_tau(theta)$ becomes $pi$ instead of $2pi$. For small $theta$, it was found that the differential shot noise of spin transfer torque is very sensitive to the bias voltage and the other system parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا