ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinear transport in $beta-$Na$_{0.33}$V$_2$O$_5$

65   0   0.0 ( 0 )
 نشر من قبل Paul van Loosdrecht
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. Sirbu




اسأل ChatGPT حول البحث

Transport properties of the charge ordering compound $beta-$Na$_{0.33}$V$_2$O$_5$ are studied in the temperature range from 30 K to 300 K using current driven DC conductivity experiments. It is found that below the metal-insulator transition temperature (T$_{mi}$ = 136 K) this material shows a typical nonlinear charge density wave behavior. The observed conductivity is discussed in terms of a classical domain model for charge density wave transport.

قيم البحث

اقرأ أيضاً

We report the observation of a magnetic polarization of the O,$2p$-states in YMn$_2$O$_5$ through the use of soft X-ray resonant scattering at the oxygen $K$-edge. Remarkably, we find that the temperature dependence of the integrated intensity of thi s signal closely follows the macroscopic electric polarization, and hence is proportional to the ferroelectric order parameter. This is in contrast to the temperature dependence observed at the Mn,$L_3$-edge, which reflects the Mn magnetic order parameter. First principle calculations provide a microscopic understanding of these results and show that a spin-dependent hybridization of O,$2p$- and Mn, 3d-states results in a purely electronic contribution to the ferroelectric polarization, which can exist in the absence of lattice distortions.
121 - N. Su , F.-Y. Li , Y. Y. Jiao 2019
Critical phenomenon at the phase transition reveals the universal and long-distance properties of the criticality. We study the ferromagnetic criticality of the pyrochlore magnet Lu$_2$V$_2$O$_7$ at the ferromagnetic transition ${T_text{c}approx 70, text{K}}$ from the isotherms of magnetization $M(H)$ via an iteration process and the Kouvel-Fisher method. The critical exponents associated with the transition are determined as ${beta = 0.32(1)}$, ${gamma = 1.41(1)}$, and ${delta = 5.38}$. The validity of these critical exponents is further verified by scaling all the $M(H)$ data in the vicinity of $T_text{c}$ onto two universal curves in the plot of $M/|varepsilon|^beta$ versus $H/|varepsilon|^{beta+gamma}$, where ${varepsilon = T/T_text{c} -1}$. The obtained $beta$ and $gamma$ values show asymmetric behaviors on the ${T < T_text{c}}$ and the ${T > T_text{c}}$ sides, and are consistent with the predicted values of 3D Ising and cubic universality classes, respectively. This makes Lu$_2$V$_2$O$_7$ a rare example in which the critical behaviors associated with a ferromagnetic transition belong to different universality classes. We describe the observed criticality from the Ginzburg-Landau theory with the quartic cubic anisotropy that microscopically originates from the anti-symmetric Dzyaloshinskii-Moriya interaction as revealed by recent magnon thermal Hall effect and theoretical investigations.
133 - Jean-Pascal Rueff 2006
We report on first investigation of the lattice dynamics in the novel superconducting material Na$_{0.35}$CoO$_2$$cdot$1.3H$_2$O and the non-hydrated parent compound Na$_{0.7}$CoO$_2$ by inelastic x-ray scattering. The measured phonon dispersion alon g the $Gamma-M$ direction show a marked softening with hole doping of two optical phonon branches close to the Brillouin zone boundary. The phonon spectra, dispersion, and softening are well reproduced by first-principle calculations. The calculations indicates that the soft branches are mainly composed of Co-vibration modes. The estimation of the critical temperature based on electron-phonon coupling mechanism undisputedly points to a non-conventional superconducting state in this material.
We report an optical spectroscopy study on the single crystal of Na$_2$Ti$_2$As$_2$O, a sister compound of superconductor BaTi$_2$Sb$_2$O. The study reveals unexpectedly two density wave phase transitions. The first transition at 320 K results in the formation of a large energy gap and removes most part of the Fermi surfaces. But the compound remains metallic with residual itinerant carriers. Below 42 K, another density wave phase transition with smaller energy gap scale occurs and drives the compound into semiconducting ground state. These experiments thus enable us to shed light on the complex electronic structure in the titanium oxypnictides.
Formation of the triangular skyrmion-lattice is found in a tetragonal polar magnet VOSe$_2$O$_5$. By magnetization and small-angle neutron scattering measurements on the single crystals, we identify a cycloidal spin state at zero field and a Neel-typ e skyrmion-lattice phase under a magnetic field along the polar axis. Adjacent to this phase, another magnetic phase of an incommensurate spin texture is identified at lower temperatures, tentatively assigned to a square skyrmion-lattice phase. These findings exemplify the versatile features of Neel-type skyrmions in bulk materials, and provide a unique occasion to explore the physics of topological spin textures in polar magnets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا