ترغب بنشر مسار تعليمي؟ اضغط هنا

Modelling Disorder: the Cases of Wetting and DNA Denaturation

66   0   0.0 ( 0 )
 نشر من قبل Sa\\'ul Ares
 تاريخ النشر 2005
  مجال البحث فيزياء علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the effect of the composition of the genetic sequence on the melting temperature of double stranded DNA, using some simple analytically solvable models proposed in the framework of the wetting problem. We review previous work on disorder

قيم البحث

اقرأ أيضاً

The denaturation transition of circular DNA is studied within a Poland-Scheraga type approach, generalized to account for the fact that the total linking number (LK), which measures the number of windings of one strand around the other, is conserved. In the model the LK conservation is maintained by invoking both overtwisting and writhing (supercoiling) mechanisms. This generalizes previous studies which considered each mechanism separately. The phase diagram of the model is analyzed as a function of the temperature and the elastic constant $kappa$ associated with the overtwisting energy for any given loop entropy exponent, $c$. As is the case where the two mechanisms apply separately, the model exhibits no denaturation transition for $c le 2$. For $c>2$ and $kappa=0$ we find that the model exhibits a first order transition. The transition becomes of higher order for any $kappa>0$. We also calculate the contribution of the two mechanisms separately in maintaining the conservation of the linking number and find that it is weakly dependent on the loop exponent $c$.
115 - A. Bar , Y. Kafri , D. Mukamel 2006
The dynamics of a loop in DNA molecules at the denaturation transition is studied by scaling arguments and numerical simulations. The autocorrelation function of the state of complementary bases (either closed or open) is calculated. The long-time de cay of the autocorrelation function is expressed in terms of the loop exponent c both for homopolymers and heteropolymers. This suggests an experimental method for measuring the exponent c using florescence correlation spectroscopy.
328 - C. Richard , A. J. Guttmann 2003
Poland-Scheraga models were introduced to describe the DNA denaturation transition. We give a rigorous and refined discussion of a family of these models. We derive possible scaling functions in the neighborhood of the phase transition point and revi ew common examples. We introduce a self-avoiding Poland-Scheraga model displaying a first order phase transition in two and three dimensions. We also discuss exactly solvable directed examples. This complements recent suggestions as to how the Poland-Scheraga class might be extended in order to display a first order transition, which is observed experimentally.
We present a modelling framework, and basic model parameterization, for the study of DNA origami folding at the level of DNA domains. Our approach is explicitly kinetic and does not assume a specific folding pathway. The binding of each staple is ass ociated with a free-energy change that depends on staple sequence, the possibility of coaxial stacking with neighbouring domains, and the entropic cost of constraining the scaffold by inserting staple crossovers. A rigorous thermodynamic model is difficult to implement as a result of the complex, multiply connected geometry of the scaffold: we present a solution to this problem for planar origami. Coaxial stacking and entropic terms, particularly when loop closure exponents are taken to be larger than those for ideal chains, introduce interactions between staples. These cooperative interactions lead to the prediction of sharp assembly transitions with notable hysteresis that are consistent with experimental observations. We show that the model reproduces the experimentally observed consequences of reducing staple concentration, accelerated cooling and absent staples. We also present a simpler methodology that gives consistent results and can be used to study a wider range of systems including non-planar origami.
The linking number (topological entanglement) and the writhe (geometrical entanglement) of a model of circular double stranded DNA undergoing a thermal denaturation transition are investigated by Monte Carlo simulations. By allowing the linking numbe r to fluctuate freely in equilibrium we see that the linking probability undergoes an abrupt variation (first-order) at the denaturation transition, and stays close to 1 in the whole native phase. The average linking number is almost zero in the denatured phase and grows as the square root of the chain length, N, in the native phase. The writhe of the two strands grows as the square root of N in both phases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا