ﻻ يوجد ملخص باللغة العربية
The size of the vortex core in a clean superconductor is strongly temperature dependent and shrinks with decreasing temperature, decreasing to zero for T -> 0. We study this so-called Kramer-Pesch effect both for a single gap superconductor and for the case of a two gap superconductor using parameters appropriate for Magnesium Diboride. Usually, the Kramer-Pesch effect is absent in the dirty limit. Here, we show that the Kramer-Pesch effect exists in both bands of a two gap superconductor even if only one of the two bands is in the clean limit and the other band in the dirty limit, a case appropriate for MgB2. In this case an induced Kramer-Pesch effect appears in the dirty band. Besides numerical results we also present an analytical model for the spatial variation of the pairing potential in the vicinity of the vortex center that allows a simple calculation of the vortex core radius even in the limit T -> 0.
As a model for the vortex core in MgB2 we study a two band model with a clean sigma band and a dirty pi band. We present calculations of the vortex core size in both bands as a function of temperature and show that there exists a Kramer-Pesch effect
We theoretically investigate a non-magnetic impurity effect on the temperature dependence of the vortex core shrinkage (Kramer-Pesch effect) in a single-band s-wave superconductor. The Born limit and the unitary limit scattering are compared within t
The low-temperature shrinking of the vortex core (Kramer-Pesch effect) is studied for an isolated single vortex for chiral p-wave and s-wave superconducting phases. The effect of nonmagnetic impurities on the vortex core radius is numerically investi
We use tunable laser based Angle Resolved Photoemission Spectroscopy to study the electronic structure of the multi-band superconductor, MgB2. These results form the base line for detailed studies of superconductivity in multi-band systems. We find t
We theoretically discuss the magnetic-field-angle dependence of the zero-energy density of states (ZEDOS) in superconductors. Point-node and line-node superconducting gaps on spherical and cylindrical Fermi surfaces are considered. The Doppler-shift