ترغب بنشر مسار تعليمي؟ اضغط هنا

Localisation versus self-trapping: Polaron formation in the Anderson-Holstein model

103   0   0.0 ( 0 )
 نشر من قبل Holger Fehske
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss polaron formation in disordered electron-phonon systems.



قيم البحث

اقرأ أيضاً

The eigenstate thermalization hypothesis (ETH) is a successful theory that provides sufficient criteria for ergodicity in quantum many-body systems. Most studies were carried out for Hamiltonians relevant for ultracold quantum gases and single-compon ent systems of spins, fermions, or bosons. The paradigmatic example for thermalization in solid-state physics are phonons serving as a bath for electrons. This situation is often viewed from an open-quantum system perspective. Here, we ask whether a minimal microscopic model for electron-phonon coupling is quantum chaotic and whether it obeys ETH, if viewed as a closed quantum system. Using exact diagonalization, we address this question in the framework of the Holstein polaron model. Even though the model describes only a single itinerant electron, whose coupling to dispersionless phonons is the only integrability-breaking term, we find that the spectral statistics and the structure of Hamiltonian eigenstates exhibit essential properties of the corresponding random-matrix ensemble. Moreover, we verify the ETH ansatz both for diagonal and offdiagonal matrix elements of typical phonon and electron observables, and show that the ratio of their variances equals the value predicted from random-matrix theory.
We study Holstein polarons in three-dimensional anisotropic materials. Using a variational exact diagonalization technique we provide highly accurate results for the polaron mass and polaron radius. With these data we discuss the differences between polaron formation in dimension one and three, and at small and large phonon frequency. Varying the anisotropy we demonstrate how a polaron evolves from a one-dimensional to a three-dimensional quasiparticle. We thereby resolve the issue of polaron stability in quasi-one-dimensional substances and clarify to what extent such polarons can be described as one-dimensional objects. We finally show that even the local Holstein interaction leads to an enhancement of anisotropy in charge carrier motion.
152 - O. S. Barisic , S. Barisic 2008
The behavior of the 1D Holstein polaron is described, with emphasis on lattice coarsening effects, by distinguishing between adiabatic and nonadiabatic contributions to the local correlations and dispersion properties. The original and unifying syste matization of the crossovers between the different polaron behaviors, usually considered in the literature, is obtained in terms of quantum to classical, weak coupling to strong coupling, adiabatic to nonadiabatic, itinerant to self-trapped polarons and large to small polarons. It is argued that the relationship between various aspects of polaron states can be specified by five regimes: the weak-coupling regime, the regime of large adiabatic polarons, the regime of small adiabatic polarons, the regime of small nonadiabatic (Lang-Firsov) polarons, and the transitory regime of small pinned polarons for which the adiabatic and nonadiabatic contributions are inextricably mixed in the polaron dispersion properties. The crossovers between these five regimes are positioned in the parameter space of the Holstein Hamiltonian.
176 - Zhou Li , L. Covaci , M. Berciu 2011
We utilize an exact variational numerical procedure to calculate the ground state properties of a polaron in the presence of a Rashba-like spin orbit interaction. Our results corroborate with previous work performed with the Momentum Average approxim ation and with weak coupling perturbation theory. We find that spin orbit coupling increases the effective mass in the regime with weak electron phonon coupling, and decreases the effective mass in the intermediate and strong electron phonon coupling regime. Analytical strong coupling perturbation theory results confirm our numerical results in the small polaron regime. A large amount of spin orbit coupling can lead to a significant lowering of the polaron effective mass.
255 - S. Nishimoto , S. Ejima , 2012
We study the interplay of disorder and interaction effects including bosonic degrees of freedom in the framework of a generic one-dimensional transport model, the Anderson-Edwards model. Using the density-matrix renormalization group technique, we ex tract the localization length and the renormalization of the Tomonaga Luttinger liquid parameter from the charge-structure factor by a elaborate sample-average finite-size scaling procedure. The properties of the Anderson localized state can be described in terms of scaling relations of the metallic phase without disorder. We analyze how disorder competes with the charge-density-wave correlations triggered by the bosons and give evidence that strong disorder will destroy the charge-ordered state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا