ﻻ يوجد ملخص باللغة العربية
We investigated the aspect ratio (thickness/width) dependence of the threshold current density required for the current-driven domain wall (DW) motion for the Ni81Fe19 nanowires. It has been shown theoretically that the threshold current density is proportional to the product of the hard-axis magnetic anisotropy Kperp and the DW width lamda. (Phys. Rev. Lett. 92, 086601 (2004).) We show experimentally that Kperp can be controlled by the magnetic shape anisotropy in the case of the Ni81Fe19 nanowires, and that the threshold current density increases with an increase of Kperp*l. We succeeded to reduce the threshold current density by half by the shape control.
It was found that high current density needed for the current-driven domain wall motion results in the Joule heating of the sample. The sample temperature, when the current-driven domain wall motion occurred, was estimated by measuring the sample res
In order to explain recent experiments reporting a motion of magnetic domain walls (DW) in nanowires carrying a current, we propose a modification of the spin transfer torque term in the Landau-Lifchitz-Gilbert equation. We show that it explains, wit
Current-driven magnetic domain wall motion is demonstrated in the quaternary ferromagnetic semiconductor (Ga,Mn)(As,P) at temperatures well below the ferromagnetic transition temperature, with critical currents of the order 10^5Acm^-2. This is enable
Spin-polarized electric current exerts torque on local magnetic spins, resulting in magnetic domain-wall (DW) motion in ferromagnetic nanowires. Such current-driven DW motion opens great opportunities toward next-generation magnetic devices controlle
Deterministic control of domain walls orthogonal to the direction of current flow is demonstrated by exploiting spin orbit torque in a perpendicularly polarized Ta/CoFeB/MgO multilayer in presence of an in-plane magnetic field. Notably, such orthogon