ﻻ يوجد ملخص باللغة العربية
The charge spin-separation, pseudogap formation and phase diagrams are studied in two and four site Hubbard clusters using analytical diagonalization and grand canonical ensemble method in a multidimensional parameter space of temperature, magnetic field, on-site Coulomb interaction ($Uge 0$), and chemical potential. The numerically evaluated, exact expressions for charge and spin susceptibilities provide clear evidence for the existence of true gaps in the ground state and pseudogaps in a limited range of temperature. In particular, Mott-Hubbard type charge crossover, spin pseudogap and magnetic correlations with antiferromagnetic (spin) pseudogap structure for two and four site clusters closely resemble the pseudogap phenomena and the normal-state phase diagram in high T$_c$ superconductors. ~ ~
An exact study of charge-spin separation, pairing fluctuations and pseudogaps is carried out by combining the analytical eigenvalues of the four-site Hubbard clusters with the grand canonical and canonical ensemble approaches in a multidimensional pa
Exact thermal studies of small (4-site, 5-site and 8-site) Hubbard clusters with local electron repulsion yield intriguing insight into phase separation, charge-spin separation, pseudogaps, condensation, in particular, pairing fluctuations away fro
We consider the repulsive Hubbard model in one dimension and show the different mechanisms present in the charge and spin separation phenomena for an electron, at half filling and bellow half filling. We also comment recent experimental results.
Spin-charge separation (SCS) is a striking manifestation of strong correlations in low-dimensional quantum systems, whereby a fermion splits into separate spin and charge excitations that travel at different speeds. Here, we demonstrate that periodic
By using variational wave functions and quantum Monte Carlo techniques, we investigate the interplay between electron-electron and electron-phonon interactions in the two-dimensional Hubbard-Holstein model. Here, the ground-state phase diagram is tri