ترغب بنشر مسار تعليمي؟ اضغط هنا

Static and dynamic Jahn-Teller effect in the alkali metal fulleride salts A4C60 (A = K, Rb, Cs)

110   0   0.0 ( 0 )
 نشر من قبل Gy\\\"ongyi Klupp
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. Klupp




اسأل ChatGPT حول البحث

We report the temperature dependent mid- and near-infrared spectra of K4C60, Rb4C60 and Cs4C60. The splitting of the vibrational and electronic transitions indicates a molecular symmetry change of C604- which brings the fulleride anion from D2h to either a D3d or a D5d distortion. In contrast to Cs4C60, low temperature neutron diffraction measurements did not reveal a structural phase transition in either K4C60 and Rb4C60. This proves that the molecular transition is driven by the molecular Jahn-Teller effect, which overrides the distorting potential field of the surrounding cations at high temperature. In K4C60 and Rb4C60 we suggest a transition from a static to a dynamic Jahn-Teller state without changing the average structure. We studied the librations of these two fullerides by temperature dependent inelastic neutron scattering and conclude that both pseudorotation and jump reorientation are present in the dynamic Jahn-Teller state.



قيم البحث

اقرأ أيضاً

The Jahn-Teller (JT) distortion that can remove electronic degeneracies in partially occupied states and results in systematic atomic displacements is a common underlying feature to many of the intriguing phenomena observed in 3d perovskites, encompa ssing magnetism, superconductivity, orbital ordering and colossal magnetoresistance. Although the seminal Jahn and Teller theorem has been postulated almost a century ago, the origins of this effect in perovskite materials are still debated, including propositions such as super exchange, spin-phonon coupling, sterically induced lattice distortions, and strong dynamical correlation effects. Here we analyze the driving forces behind the Jahn-Teller motions and associated electronic fingerprints in a full range of ABX3 compounds. We identify (i) compounds that are prone to an electronically-driven instabilities (i.e. a pure JT effect) such as KCrF3, KCuF3 or LaVO3 and proceed to relax the structures, finding quantitatively the JTD in excellent agreement with experiment; (ii) compounds such as LaMnO3 or LaTiO3 that do not show electronically driven JTD despite orbital degeneracies, because their strongly hybridized B, d-X, p states supply but too weak JT forces to overcome the needed atomic distortions; (iii) although LaVO3 exhibits similar B, d-X, p hybridizations as LaTiO3, the former compound exhibits a robust electronic instability while LaTiO3 has zero stabilization energy, the reason being that LaVO3 has two electrons t2g2 relative to LaTiO3 with just one t2g1. (iv) We explain the trends in orbital ordering whereby electrons occupy orbitals that point to orthogonal directions between all nearest-neighbor 3d atoms. We thereby provide a unified vision to explain octahedra deformations in perovskites that, at odds with common wisdom, does not require the celebrated Mott-Hubbard mechanism.
We investigate the electronic structure of the new family of kagome metals AV$_{3}$Sb$_{5}$ (A = K, Rb, Cs) using first-principles calculations. We analyze systematically the evolution of the van Hove singularities (vHss) across the entire family upo n applied pressure and hole doping, specifically focusing on the two vHss closer to the Fermi energy. With pressure, these two saddle points shift away from the Fermi level. At the same time, the Fermi surface undergoes a large reconstruction with respect to the Sb bands while the V bands remain largely unchanged, pointing to the relevant role of the Sb atoms in the electronic structure of these materials. Upon hole doping, we find the opposite trend, where the saddle points move closer to the Fermi level for increasing dopings. All in all, we show how pressure and doping are indeed two mechanisms that can be used to tune the location of the two vHss closer to the Fermi level and can be exploited to tune different Fermi surface instabilities and associated orders.
153 - F. Virot , R. Hayn , A. Boukortt 2010
We present an ab-initio and analytical study of the Jahn-Teller effect in two diluted magnetic semiconductors (DMS) with d4 impurities, namely Mn-doped GaN and Cr-doped ZnS. We show that only the combined treatment of Jahn-Teller distortion and stron g electron correlation in the 3d shell may lead to the correct insulating electronic structure. Using the LSDA+U approach we obtain the Jahn-Teller energy gain in reasonable agreement with the available experimental data. The ab-initio results are completed by a more phenomenological ligand field theory.
Superconductors close to quantum phase transitions often exhibit a simultaneous increase of electronic correlations and superconducting transition temperatures. Typical examples are given by the recently discovered iron-based superconductors. We inve stigated the band-specific quasiparticle masses of AFe2As2 single crystals with A = K, Rb, and Cs and determined their pressure dependence. The evolution of electronic correlations could be tracked as a function of volume and hole doping. The results indicate that with increasing alkali-metal ion radius a quantum critical point is approached. The critical fluctuations responsible for the enhancement of the quasiparticle masses appear to suppress the superconductivity.
Absorption spectra fine structure of $KDy(MoO_4)_2$ in the region of cooperative Jahn-Teller type ordering was studied. Temperature anomalies in the spectra occurring at phase transformation correlate with the ultrasound peculiarities observed earlie r. Based on the symmetry approaching, possible activity of the irreducible representations of the rhombic $D_{2h}$ point group was discussed, which lead to the incommensurate phase at cooperative ordering. It was supposed, that coupled $A_u$-type phonon mode may lead to the incommensurate phase existence, which is possible at least in the temperature region 17-12 K.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا