ﻻ يوجد ملخص باللغة العربية
We report encapsulated C60 molecules on electron transport in carbon-nanotube peapod quantum dots. We find atomic-like behaviors with doubly degenerate electronic levels, which exist only around ground states, by single electron spectroscopy measured at low back-gate voltages (Vbgs). Correlation with presence of nearly free electrons (NFEs) unique to the peapods is discussed. In contrast, we find that encapsulated C60 molecules do not affect to single charging effect. Moreover, we find anomalously high values of powers observed in power laws in conductance versus energy relationships, which are strongly associated with the doubly degenerate levels. It is revealed that the powers originate from Tomonaga-Luttinger liquids via the occupied doubly degenerate levels. Encapsulated C60 molecules do not eliminate a ballistic charge transport in single-walled nanotubes.
The Tomonaga-Luttinger liquid (TLL) concept is believed to generically describe the strongly-correlated physics of one-dimensional systems at low temperatures. A hallmark signature in 1D conductors is the quantum phase transition between metallic and
Electronic waveguides in graphene formed by counterpropagating snake states in suitable inhomogeneous magnetic fields are shown to constitute a realization of a Tomonaga-Luttinger liquid. Due to the spatial separation of the right- and left-moving sn
There have been conflicting reports on the electronic properties of twin domain boundaries (DBs) in MoSe2 monolayer, including the quantum well states, charge density wave, and Tomonaga-Luttinger liquid (TLL). Here we employ low-temperature scanning
The existence of long-lived non-equilibrium states without showing thermalization, which has previously been demonstrated in time evolution of ultracold atoms, suggests the possibility of their spatial analogue in transport behavior of interacting el
We study theoretically the transport through a single impurity in a one-channel Luttinger liquid coupled to a dissipative (ohmic) bath . For non-zero dissipation $eta$ the weak link is always a relevant perturbation which suppresses transport strongl