ترغب بنشر مسار تعليمي؟ اضغط هنا

Local Simulation Algorithms for Coulomb Gases with Dynamical Dielectric Effects

48   0   0.0 ( 0 )
 نشر من قبل Robert Sedgewick
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the application of the local lattice technique of Maggs and Rossetto to problems that involve the motion of objects with different dielectric constants than the background. In these systems the simulation method produces a spurious interaction force which causes the particles to move in an unphysical manner. We show that this term can be removed using a variant of a method known from high-energy physics simulations, the multiboson method, and demonstrate the effectiveness of this corrective method on a system of neutral particles. We then apply our method to a one-component plasma to show the effect of the spurious interaction term on a charged system.



قيم البحث

اقرأ أيضاً

42 - A.Duncan , R.D. Sedgewick 2006
A recent reformulation [1] of the problem of Coulomb gases in the presence of a dynamical dielectric medium showed that finite temperature simulations of such systems can be accomplished on the basis of completely local Hamiltonians on a spatial latt ice by including additional bosonic fields. For large systems, the Monte Carlo algorithm proposed in Ref. [1] becomes inefficient due to a low acceptance rate for particle moves in a fixed background multiboson field. We show here how this problem can be circumvented by use of a coupled particle-multiboson update procedure that improves acceptance rates on large lattices by orders of magnitude. The method is tested on a one-component plasma with neutral dielectric particles for a variety of system sizes.
We present a lattice Monte Carlo algorithm based on the one originally proposed by Maggs and Rossetto for simulating electrostatic interactions in inhomogeneous dielectric media. The original algorithm is known to produce attractive interactions betw een particles of the same dielectric constant in the medium of different dielectric constant. We demonstrate that such interactions are spurious, caused by incorrectly biased statistical weight arising from particle motion during the Monte Carlo moves. We propose a simple parallel tempering algorithm that corrects this unphysical bias. The efficacy of our algorithm is tested on a simple binary mixture and on an uncharged polymer in a solvent, and applied to salt-doped polymer solutions.
Contacts at the Coulomb threshold are unstable to tangential perturbations and thus contribute to failure at the microscopic level. How is such a local property related to global failure, beyond the effective picture given by a Mohr-Coulomb type fail ure criterion? Here, we use a simulated bed of frictional disks slowly tilted under the action of gravity to investigate the link between the avalanche process and a global generalized isostaticity criterion. The avalanche starts when the packing as a whole is still stable according to this criterion, underlining the role of large heterogeneities in the destabilizing process: the clusters of particles with fully mobilized contacts concentrate local failure. We demonstrate that these clusters, at odds with the pile as a whole, are also globally marginal with respect to generalized isostaticity. More precisely, we observe how the condition of their stability from a local mechanical proprety progressively builds up to the generalized isostaticity criterion as they grow in size and eventually span the whole system when approaching the avalanche.
Quantum fluctuations are imprinted with valuable information about transport processes. Experimental access to this information is possible, but challenging. We introduce the dynamical Coulomb blockade (DCB) as a local probe for fluctuations in a sca nning tunneling microscope (STM) and show that it provides information about the conduction channels. In agreement with theoretical predictions, we find that the DCB disappears in a single-channel junction with increasing transmission following the Fano factor, analogous to what happens with shot noise. Furthermore we demonstrate local differences in the DCB expected from changes in the conduction channel configuration. Our experimental results are complemented by ab initio transport calculations that elucidate the microscopic nature of the conduction channels in our atomic-scale contacts. We conclude that probing the DCB by STM provides a technique complementary to shot noise measurements for locally resolving quantum transport characteristics.
The net charge of solvated entities, ranging from polyelectrolytes and biomolecules to charged nanoparticles and membranes, depends on the local dissociation equilibrium of individual ionizable groups. Incorporation of this phenomenon, emph{charge re gulation}, in theoretical and computational models requires dynamic, configuration-dependent recalculation of surface charges and is therefore typically approximated by assuming constant net charge on particles. Various computational methods exist that address this. We present an alternative, particularly efficient charge regulation Monte Carlo method (CR-MC), which explicitly models the redistribution of individual charges and accurately samples the correct grand-canonical charge distribution. In addition, we provide an open-source implementation in the LAMMPS molecular dynamics (MD) simulation package, resulting in a hybrid MD/CR-MC simulation method. This implementation is designed to handle a wide range of implicit-solvent systems that model discreet ionizable groups or surface sites. The computational cost of the method scales linearly with the number of ionizable groups, thereby allowing accurate simulations of systems containing thousands of individual ionizable sites. By matter of illustration, we use the CR-MC method to quantify the effects of charge regulation on the nature of the polyelectrolyte coil--globule transition and on the effective interaction between oppositely charged nanoparticles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا