ﻻ يوجد ملخص باللغة العربية
A Mn4 single-molecule magnet (SMM), with a well isolated spin ground state of S = 9/2, is used as a model system to study Landau-Zener (LZ) tunneling in the presence of weak intermolecular dipolar and exchange interactions. The anisotropy constants D and B are measured with minor hysteresis loops. A transverse field is used to tune the tunnel splitting over a large range. Using the LZ and inverse LZ method, it is shown that these interactions play an important role in the tunnel rates. Three regions are identified: (i) at small transverse fields, tunneling is dominated by single tunnel transitions; (ii) at intermediate transverse fields, the measured tunnel rates are governed by reshuffling of internal fields, (iii) at larger transverse fields, the magnetization reversal starts to be influenced by the direct relaxation process, and many-body tunnel events may occur. The hole digging method is used to study the next-nearest neighbor interactions. At small external fields, it is shown that magnetic ordering occurs which does not quench tunneling. An applied transverse field can increase the ordering rate. Spin-spin cross-relaxations, mediated by dipolar and weak exchange interactions, are proposed to explain additional quantum steps.
Four discrete MnIII/MnII tetra-nuclear complexes with double-cuboidal core were synthesized. dc magnetic measurements show that both Mn2+ - Mn3+ and Mn3+ - Mn3+ magnetic interactions are ferromagnetic in three samples leading to an S = 9 ground state
High-frequency electron paramagnetic resonance (HFEPR) and AC susceptibility measurements are reported for a new high-symmetry Mn12 complex, [Mn12O12(O2CCH3)16(CH3OH)4].CH3OH. The results are compared with those of other high-symmetry spin S = 10 Mn1
We monitor the Landau-Zener dynamics of a single-ion magnet in a spin-transistor geometry. For increasing field-sweep rates, the spin reversal probability shows increasing deviations from that of a closed system. In the low-conductance limit, such de
Single-molecule magnets facilitate the study of quantum tunneling of magnetization at the mesoscopic level. The spin-parity effect is among the fundamental predictions that have yet to be clearly observed. It is predicted that quantum tunneling is su
A simple mechanical analog describing Landau-Zener tunneling effect is proposed using two weakly coupled chains of nonlinear oscillators with gradually decreasing (first chain) and increasing (second chain) masses. The model allows to investigate non