ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of Superconductivity and Charge Order on the sub-Terahertz reflectivity of La$_{1.875}$Ba$_{0.125-y}$Sr$_{y}$CuO$_4$

82   0   0.0 ( 0 )
 نشر من قبل Michele Ortolani
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The reflectivity $R (omega)$ of both the $ab$ plane and the c axis of two single crystals of La$_{1.875}$Ba$_{0.125-y}$Sr$_{y}$CuO$_4$ has been measured down to 5 cm$^{-1}$, using coherent synchrotron radiation below 30 cm$^{-1}$. For $y$ = 0.085, a Josephson Plasma Resonance is detected at $T ll T_c$ = 31 K in $R_{c} (omega)$, and a far-infrared peak (FIP) appears in the optical conductivity below 50 K, where non-static charge ordering (CO) is reported by X-ray scattering. For $y$ = 0.05 ($T_c$ = 10 K), a FIP is observed in the low-temperature tetragonal phase below the ordering temperature $T_{CO}$. At 1/8 doping the peak frequency scales linearly with $T_{CO}$, confirming that the FIP is an infrared signature of CO, either static or fluctuating.

قيم البحث

اقرأ أيضاً

The occurrence of charge-density-wave (CDW) order in underdoped cuprates is now well established, although the precise nature of the CDW and its relationship with superconductivity is not. Theoretical proposals include contrasting ideas such as that pairing may be driven by CDW fluctuations or that static CDWs may intertwine with a spatially-modulated superconducting wave function. We test the dynamics of CDW order in La$_{1.825}$Ba$_{0.125}$CuO$_4$ by using x-ray photon correlation spectroscopy (XPCS) at the CDW wave vector, detected resonantly at the Cu $L_3$-edge. We find that the CDW domains are strikingly static, with no evidence of significant fluctuations up to 2, icefrac{3}{4} hours. We discuss the implications of these results for some of the competing theories.
We report on neutron-scattering results on the impact of a magnetic field on stripe order in the cuprate La$_{1.875}$Ba$_{0.125}$CuO$_4$. It is found that a 7 T magnetic field applied along the {it c} axis causes a small but finite enhancement of the spin-order peak intensity and has no observable effect on the peak width. Inelastic neutron-scattering measurements indicate that the low-energy magnetic excitations are not affected by the field, within experimental error. In particular, the small energy gap that was recently reported is still present at low temperature in the applied field. In addition, we find that the spin-correlation length along the antiferromagnetic stripes is greater than that perpendicular to them.
Although all superconducting cuprates display charge-ordering tendencies, their low-temperature properties are distinct, impeding efforts to understand the phenomena within a single conceptual framework. While some systems exhibit stripes of charge a nd spin, with a locked periodicity, others host charge density waves (CDWs) without any obviously related spin order. Here we use resonant inelastic x-ray scattering (RIXS) to follow the evolution of charge correlations in the canonical stripe ordered cuprate La$_{1.875}$Ba$_{0.125}$CuO$_{4}$ (LBCO~$1/8$) across its ordering transition. We find that high-temperature charge correlations are unlocked from the wavevector of the spin correlations, signaling analogies to CDW phases in various other cuprates. This indicates that stripe order at low temperatures is stabilized by the coupling of otherwise independent charge and spin density waves, with important implications for the relation between charge and spin correlations in the cuprates.
We use femtosecond resonant soft x-ray scattering to measure the ultrafast optical melting of charge-order correlations in La$_{1.875}$Ba$_{0.125}$CuO$_4$. By analyzing both the energy-resolved and energy-integrated order parameter dynamics, we find evidence of a short-lived nonequilibrium state, whose features are compatible with a sliding charge density wave coherently set in motion by the pump. This transient state exhibits shifts in both the quasielastic line energy and its wave vector, as expected from a classical Doppler effect. The wave vector change is indeed found to directly follow the pump propagation direction. These results demonstrate the existence of sliding charge order behavior in an unconventional charge density wave system and underscore the power of ultrafast optical excitation as a tool to coherently manipulate electronic condensates.
We present new x-ray and neutron scattering measurements of stripe order in La(1.875)Ba(0.125)CuO(4), along with low-field susceptibility, thermal conductivity, and specific heat data. We compare these with previously reported results for resistivity and thermopower. Temperature-dependent features indicating transitions (or crossovers) are correlated among the various experimental quantities. Taking into account recent spectroscopic studies, we argue that the most likely interpretation of the complete collection of results is that an unusual form of two-dimensional superconducting correlations appears together with the onset of spin-stripe order. Recent theoretical proposals for a sinusoidally-modulated superconducting state compatible with stripe order provide an intriguing explanation of our results and motivate further experimental tests. We also discuss evidence for one-dimensional pairing correlations that appear together with the charge order. With regard to the overall phenomenology, we consider the degree to which similar behavior may have been observed in other cuprates, and describe possible connections to various puzzling phenomena in cuprate superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا