ترغب بنشر مسار تعليمي؟ اضغط هنا

Conductance oscillations in zigzag platinum chains

653   0   0.0 ( 0 )
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using first principles simulations we perform a detailed study of the structural, electronic and transport properties of monoatomic platinum chains, sandwiched between platinum electrodes. First we demonstrate that the most stable atomic configuration corresponds to a zigzag arrangement that gradually straightens as the chains are stretched. Secondly, we find that the conductance at equilibrium atomic spacing does not oscillate with the number of atoms $n$ in the chain, but instead decreases almost monotonically with $n$. In contrast, the conductances of chains of fixed $n$ oscillate as the end atoms are pulled apart, due to the gradual closing and opening of conductance channels as the chain straightens.



قيم البحث

اقرأ أيضاً

Recent experimental data demonstrate emerging magnetic order in platinum atomically thin nanowires. Furthermore, an unusual form of magnetic anisotropy -- colossal magnetic anisotropy (CMA) -- was earlier predicted to exist in atomically thin platinu m nanowires. Using spin dynamics simulations based on first-principles calculations, we here explore the spin dynamics of atomically thin platinum wires to reveal the spin relaxation signature of colossal magnetic anisotropy, comparing it with other types of anisotropy such as uniaxial magnetic anisotropy (UMA). We find that the CMA alters the spin relaxation process distinctly and, most importantly, causes a large speed-up of the magnetic relaxation compared to uniaxial magnetic anisotropy. The magnetic behavior of the nanowire exhibiting CMA should be possible to identify experimentally at the nanosecond time scale for temperatures below 5 K. This time-scale is accessible in e.g., soft x-ray free electron laser experiments.
We report a detailed theoretical study of the bonding and conduction properties of an hydrogen molecule joining either platinum or palladium electrodes. We show that an atomic arrangement where the molecule is placed perpendicular to the electrodes i s unstable for all distances between electrodes. In contrast, the configuration where the molecule bridges the electrodes is stable in a wide range of distances. In this last case the bonding state of the molecule does not hybridize with the leads and remains localized within the junction. As a result, this state does not transmit charge so that electronic transport is carried only through the anti-bonding state. This fact leads to conductances of 1 $G_0$ at most, where $G_0=2e^2/h$. We indeed find that G is equal to 0.9 and 0.6 $G_0$ for Pt and Pd contacts respectively.
Superconductivity has recently been discovered in Pr$_{2}$Ba$_{4}$Cu$_{7}$O$_{15-delta}$ with a maximum $T_c$ of about 15K. Since the CuO planes in this material are believed to be insulating, it has been proposed that the superconductivity occurs in the double (or zigzag) CuO chain layer. On phenomenological grounds, we propose a theoretical interpretation of the experimental results in terms of a new phase for the zigzag chain, labelled by C$_1$S$_{3/2}$. This phase has a gap for some of the relative spin and charge modes but no total spin gap, and can have a divergent superconducting susceptibility for repulsive interactions. A microscopic model for the zigzag CuO chain is proposed, and on the basis of density matrix renormalization group (DMRG) and bosonization studies of this model, we adduce evidence that supports our proposal.
A string of trapped ions at zero temperature exhibits a structural phase transition to a zigzag structure, tuned by reducing the transverse trap potential or the interparticle distance. The transition is driven by transverse, short wavelength vibrati onal modes. We argue that this is a quantum phase transition, which can be experimentally realized and probed. Indeed, by means of a mapping to the Ising model in a transverse field, we estimate the quantum critical point in terms of the system parameters, and find a finite, measurable deviation from the critical point predicted by the classical theory. A measurement procedure is suggested which can probe the effects of quantum fluctuations at criticality. These results can be extended to describe the transverse instability of ultracold polar molecules in a one dimensional optical lattice.
Metal atomic chains have been reported to change their electronic or magnetic properties by slight mechanical stimulus. However, the mechanical response has been veiled because of lack of information on the bond nature. Here, we clarify the bond natu re in platinum (Pt) monatomic chains by our developed in-situ transmission electron microscope method. The stiffness is measured with sub N/m precision by quartz length-extension resonator. The bond stiffnesses at the middle of the chain and at the connecting to the base are estimated to be 25 and 23 N/m, respectively, which are higher than the bulk counterpart. Interestingly, the bond length of 0.25 nm is found to be elastically stretched to 0.31 nm, corresponding to 24% in strain. Such peculiar bond nature could be explained by a novel concept of string tension. This study is a milestone that will significantly change the way we think about atomic bonds in one-dimensional substance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا