ترغب بنشر مسار تعليمي؟ اضغط هنا

Tunable charge carriers and thermoelectricity of single-crystal Ba8Ga16Sn30

96   0   0.0 ( 0 )
 نشر من قبل Marcos A. Avila
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have grown single crystals of the type-VIII intermetallic clathrate Ba8Ga16Sn30 from both Sn and Ga flux, evaluated their compositions through electron microprobe analysis and studied their transport properties through measurements on temperature dependent resistivity, thermopower and Hall coefficient. Crystals grown in Sn flux show n-type carriers and those from Ga flux show p-type carriers, whereas all measured compositions remain very close to the stoichiometric 8:16:30 proportion of Ba:Ga:Sn, expected from charge-balance principles. Our results indicate a very high sensitivity of the charge carrier nature and density with respect to the growth conditions, leading to relevant differences in transport properties which point to the importance of tuning this material for optimal thermoelectric performance.

قيم البحث

اقرأ أيضاً

97 - D. Huo , T. Sakata , T. Sasakawa 2004
We report the electrical resistivity, Hall coefficient, thermoelectric power, specific heat, and thermal conductivity on single crystals of the type-VIII clathrate Ba8Ga16Sn30 grown from Sn-flux. Negative S and R_H over a wide temperature range indic ate that electrons dominate electrical transport properties. Both rho(T) and S(T) show typical behavior of a heavily doped semiconductor. The absolute value of S increases monotonically to 243 uV/K with increasing temperature up to 550 K. The large S may originate from the low carrier concentration n=3.7x10^19 cm^(-3). Hall mobility u_H shows a maximum of 62 cm^2/Vs around 70 K. The analysis of temperature dependence of u_H suggests a crossover of dominant scattering mechanism from ionized impurity to acoustic phonon scattering with increasing temperature. The existence of local vibration modes of Ba atoms in cages composed of Ga and Sn atoms is evidenced by analysis of experimental data of structural refinement and specific heat, which give an Einstein temperature of 50 K and a Debye temperature of 200 K. This local vibration of Ba atoms should be responsible for the low thermal conductivity (1.1 W/m K at 150 K). The potential of type-VIII clathrate compounds for thermoelectric application is discussed.
The optical conductivity of charge carriers coupled to quantum phonons is studied in the framework of the one-dimensional spinless Holstein model. For one electron, variational diagonalisation yields exact results in the thermodynamic limit, whereas at finite carrier density analytical approximations based on previous work on single-particle spectral functions are obtained. Particular emphasis is put on deviations from weak-coupling, small-polaron or one-electron theories occurring at intermediate coupling and/or finite carrier density. The analytical results are in surprisingly good agreement with exact data, and exhibit the characteristic polaronic excitations observed in experiments on manganites.
The search for semiconductors with high thermoelectric figure of merit has been greatly aided by theoretical modeling of electron and phonon transport, both in bulk materials and in nanocomposites. Recent experiments have studied thermoelectric trans port in ``strongly correlated materials derived by doping Mott insulators, whose insulating behavior without doping results from electron-electron repulsion, rather than from band structure as in semiconductors. Here a unified theory of electrical and thermal transport in the atomic and ``Heikes limit is applied to understand recent transport experiments on sodium cobaltate and other doped Mott insulators at room temperature and above. For optimal electron filling, a broad class of narrow-bandwidth correlated materials are shown to have power factors (the electronic portion of the thermoelectric figure of merit) as high at and above room temperature as in the best semiconductors.
Hybrid organic-inorganic perovskites have emerged as very promising materials for photonic applications, thanks to the great synthetic versatility that allows to tune their optical properties. In the two-dimensional (2D) crystalline form, these mater ials behave as multiple quantum-well heterostructures with stable excitonic resonances up to room temperature. In this work strong light-matter coupling in 2D perovskite single-crystal flakes is observed, and the polarization-dependent exciton-polariton response is used to disclose new excitonic features. For the first time, an out-of-plane component of the excitons is observed, unexpected for such 2D systems and completely absent in other layered materials, such as transition-metal dichalcogenides. By comparing different hybrid perovskites with the same inorganic layer but different organic interlayers, it is shown how the nature of the organic ligands controllably affects the out-of-plane exciton-photon coupling. Such vertical dipole coupling is particularly sought in those systems, e.g. plasmonic nanocavities, in which the direction of the field is usually orthogonal to the material sheet. Organic interlayers are shown to affect also the strong birefringence associated to the layered structure, which is exploited in this work to completely rotate the linear polarization degree in only few microns of propagation, akin to what happens in metamaterials.
119 - Yinghao Zhu , Si Wu , Bao Tu 2020
Magnetization measurements and time-of-flight neutron powder-diffraction studies on the high-temperature (300--980 K) magnetism and crystal structure (321--1200 K) of a pulverized YCrO$_3$ single crystal have been performed. Temperature-dependent inv erse magnetic susceptibility coincides with a piecewise linear function with five regimes, with which we fit a Curie-Weiss law and calculate the frustration factor $f$. The fit results indicate a formation of magnetic polarons between 300 and 540 K and a very strong magnetic frustration. By including one factor $eta$ that represents the degree of spin interactions into the Brillouin function, we can fit well the applied-magnetic-field dependence of magnetization. No structural phase transition was observed from 321 to 1200 K. The average thermal expansions of lattice configurations (emph{a}, emph{b}, emph{c}, and emph{V}) obey well the Gr$ddot{textrm{u}}$neisen approximations with an anomaly appearing around 900 K, implying an isosymmetric structural phase transition, and display an anisotropic character along the crystallographic emph{a}, emph{b}, and emph{c} axes with the incompressibility $K^a_0 > K^c_0 > K^b_0$. It is interesting to find that at 321 K, the local distortion size $Delta$(O2) $approx$ 1.96$Delta$(O1) $approx$ 4.32$Delta$(Y) $approx$ 293.89$Delta$(Cr). Based on the refined Y-O and Cr-O bond lengths, we deduce the local distortion environments and modes of Y, Cr, O1, and O2 ions. Especially, the Y and O2 ions display obvious atomic displacement and charge subduction, which may shed light on the dielectric property of the YCrO$_3$ compound. Additionally, by comparing Kramers Mn$^{3+}$ with non-Kramers Cr$^{3+}$ ions, it is noted that being a Kramers or non-Kramers ion can strongly affect the local distortion size, whereas, it may not be able to change the detailed distortion mode.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا