ﻻ يوجد ملخص باللغة العربية
The magnetic field (B) dependence of the electronic specific heat for a simple BCS type-II superconductor has been determined from measurements on pure niobium (Nb). Contrary to expectations, the electronic specific heat coefficient gamma(T,B) is observed to be a sublinear function of B at fields above the lower critical field H_{c1}. This behavior is attributed to the delocalization of quasiparticles bound to the vortex cores. The results underscore the ambiguity of interpretation that arises in specific heat studies of this kind on newly discovered type-II superconductors, and also emphasize the need to such measurements under field-cooled conditions.
We theoretically study a non-magnetic impurity effect on the vortex bound states of a multi-quantum vortex. The zero-energy peak of the local density of states is investigated for vortex cores with the winding numbers 2 and 4 within the framework of
High resolution measurements of the specific heat of liquid $^{3}$He in the presence of a silver surface have been performed at temperatures near the superfluid transition in the pressure range of 1 to 29 bar. The surface contribution to the heat cap
The specific heat of single crystal hole-doped Ca0.33Na0.67Fe2As2, Tc(onset)=33.7 K, was measured from 0.4 to 40 K. The discontinuity in the specific heat at Tc, deltaC, divided by Tc is 105 +- 5 mJ/molK2, consistent with values found previously for
The vortex dynamics and the specific heat of a type II superconducting system with quasi-periodic geometry is studied theoretically for different values of interaction parameters using the numerical simulation technique, where the vortex-vortex inter
The discoveries of superconductivity in the heavily-boron doped semiconductors diamond (C:B) in 2004 and silicon (Si:B) in 2006 have renewed the interest in the physics of the superconducting state of doped semiconductors. Recently, we discovered sup