ترغب بنشر مسار تعليمي؟ اضغط هنا

Ab Initio Calculation of Impurity Effects in Copper Oxide Materials

83   0   0.0 ( 0 )
 نشر من قبل Peter J. Hirschfeld
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe a method for calculating, within density functional theory, the electronic structure associated with typical defects which substitute for Cu in the CuO2 planes of high-Tc superconducting materials. The focus is primarily on Bi2Sr2CaCu2O8, the material on which most STM measurements of impurity resonances in the superconducting state have been performed. The magnitudes of the effective potentials found for Zn, Ni and vacancies on the in-plane Cu sites in this host material are remarkably consistent with phenomenological fits of potential scattering models to STM resonance energies. The effective potential ranges are quite short, of order 1 A with weak long range tails, in contrast to some current models of extended potentials which attempt to fit STM data. For the case of Zn and Cu vacancies, the effective potentials are strongly repulsive, and states on the impurity site near the Fermi level are simply removed. The local density of states (LDOS) just above the impurity is nevertheless found to be a maximum in the case of Zn and a local minimum in case of the vacancy, in agreement with experiment. The Zn and Cu vacancy patterns are explained as due to the long-range tails of the effective impurity potential at the sample surface. The case of Ni is richer due to the Ni atoms strong hybridization with states near the Fermi level; in particular, the short range part of the potential is attractive, and the LDOS is found to vary rapidly with distance from the surface and from the impurity site. We propose that the current controversy surrounding the observed STM patterns can be resolved by properly accounting for the effective impurity potentials and wave-functions near the cuprate surface. Other aspects of the impurity states for all three species are discussed.

قيم البحث

اقرأ أيضاً

We present {it ab-initio} time-dependent density-functional theory calculation results for low-energy collective electron excitations in $textrm{MgB}_2$. The existence of a long-lived collective excitation corresponding to coherent charge density flu ctuations between the boron $sigma$- and $pi$- bands ($sigmapi$ mode) is demonstrated. This mode has a sine-like oscillating dispersion for energies below 0.5 eV. At even lower energy we find another collective mode ($sigmasigma$ mode). We show the strong impact of local-field effects on dielectric functions in MgB$_2$. These effects account for the long q-range behavior of the modes. We discuss the physics that these collective excitations bring to the energy region typical for lattice vibrations.
We formulate an efficient scheme to perform Migdal-Eliashberg calculation considering the retardation effect from first principles. While the conventional approach requires a huge number of Matsubara frequencies, we show that the intermediate represe ntation of the Greens function [H. Shinaoka et al., Phys. Rev. B 96, 035147 (2017)] dramatically reduces the numerical cost to solve the linearized gap equation. Without introducing any empirical parameter, we demonstrate that we can successfully reproduce the experimental superconducting transition temperature of elemental Nb ($sim 10$ K) very accurately. The present result indicates that our approach has a superior performance for many superconductors for which $T_{rm c}$ is lower than ${mathcal O}(10)$ K
85 - W.M.Li , J.F.Zhao , L.P.Cao 2018
The mechanism of superconductivity in cuprates remains one of the big challenges of condensed matter physics.High Tc cuprates crystallize into layered perovskite structure featuring copper oxygen octahedral coordination. Due to the Jahn Teller effect in combination with the strong static Coulomb interaction, the octahedra in high Tc cuprates are elongated along the c axis, leading to a 3dx2-y2 orbital at the top of the band structure wherein the doped holes reside.This scenario gives rise to two dimensional characteristics in high Tc cuprates that favor d wave pairing symmetry. Here we report superconductivity in a cuprate Ba2CuO4-y wherein the local octahedron is in a very exceptional compressed version.The Ba2CuO4-y compound was synthesized at high pressure at high temperatures, and shows bulk superconductivity with critical temperature Tc above 70 K at ambient conditions. This superconducting transition temperature is more than 30 K higher than the Tc for the isostructural counterparts based on classical La2CuO4. X-ray absorption measurements indicate the heavily doped nature of the Ba2CuO4-y superconductor. In compressed octahedron the 3d3z2-r2 orbital will be lifted above the 3dx2-y2 orbital, leading to significant three dimensional nature in addition to the conventional 3dx2-y2 orbital. This work sheds important new light on advancing our comprehensive understanding of the superconducting mechanism of high Tc in cuprate materials.
We find systematic signatures suggesting a different superconducting nature for a triple-layered cuprate Bi$_2$Sr$_2$Ca$_2$Cu$_3$O$_{10+delta}$ with respect to a double-layer through the properties of intrinsic Josephson junctions (IJJs). Our measure ments on the current-voltage characteristics reveal that the $c$-axis maximum Josephson current density is sensitive to the superfluid density in outer planes while the critical temperature and the superconducting gap remain unaffected. Switching dynamics of stacked IJJs exhibit that the fluctuation in gauge-invariant phase difference of an IJJ implies that the inner plane completely shields the capacitive coupling between adjacent IJJs, which is essential for mono- and bilayered cuprates.
By paying special attention to the fact that the doped holes induce deformation of CuO6 octahedrons (or CuO5 pyramids) in cuprate superconductors, we develop a non-rigid band theory treating doping-induced alterations of energy-band structures in cop per oxide superconductors. Thanks to this theory, we obtain a complete picture of the doping-induced alteration in the electronic structure of La2CuO4, from the spin-disordered insulating phase to the metallic phase. We conclude that the Fermi surface structure of this cuprate in the underdoped region consists of Fermi pockets in the antinodal region and Fermi arcs in the nodal region, and thus that the origin of a so-called pseudogap is closely related to the existence of Fermi pockets. Moreover, we show that the carriers on the Fermi pockets contribute to the phonon mechanism in d-wave superconductivity. Finally, we discuss how one will be able to find higher Tc materials, based on the conclusions mentioned above.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا