ﻻ يوجد ملخص باللغة العربية
We have studied experimentally the influence of a parallel magnetic field ($B_{//}$) on microwave-induced resistance oscillations (MIRO) and zero-resistance states (ZRS) previously discovered in a high-mobility 2D electron system. We have observed a strong suppression of MIRO/ZRS by a modest $B_{//}sim 0.5$ T. In Hall bar samples, magnetoplasmon resonance (MPR) has also been observed concurrently with the MIRO/ZRS. In contrast to the suppression of MIRO/ZRS, the MPR peak is found to be enhanced by $B_{//}$. These findings have not been addressed by current models proposed to explain the microwave-induced effects.
We develop a systematic theory of microwave-induced oscillations in the magnetoresistivity of a two-dimensional electron gas, focusing on the regime of strongly overlapping Landau levels. At linear order in microwave power, two novel mechanisms of th
We present a systematic study of the microwave-induced oscillations in the magnetoresistance of a 2D electron gas for mixed disorder including both short-range and long-range components. The obtained photoconductivity tensor contains contributions of
The polarization dependence of the low field microwave photoconductivity and absorption of a two-dimensional electron system has been investigated in a quasi-optical setup in which linear and any circular polarization can be produced in-situ. The mic
We show that, in a magnetic field parallel to the 2D electron layer, strong electron correlations change the rate of tunneling from the layer exponentially. It results in a specific density dependence of the escape rate. The mechanism is a dynamical
Effects associated with the interference of electron waves around a magnetic point defect in two-dimensional electron gas with combined Rashba-Dresselhaus spin-orbit interaction in the presence of a parallel magnetic field are theoretically investiga