ترغب بنشر مسار تعليمي؟ اضغط هنا

Full Bulk Spin Polarization and Intrinsic Tunnel Barriers at the Surface of Layered Manganites

59   0   0.0 ( 0 )
 نشر من قبل John Freeland
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Transmission of information using the spin of the electron as well as its charge requires a high degree of spin polarization at surfaces. At surfaces however this degree of polarization can be quenched by competing interactions. Using a combination of surface sensitive x-ray and tunneling probes, we show for the quasi-two-dimensional bilayer manganites that the outermost Mn-O bilayer, alone, is affected: it is a 1-nm thick insulator that exhibits no long-range ferromagnetic order while the next bilayer displays the full spin polarization of the bulk. Such an abrupt localization of the surface effects is due to the two-dimensional nature of the layered manganite while the loss of ferromagnetism is attributed to weakened double exchange in the reconstructed surface bilayer and a resultant antiferromagnetic phase. The creation of a well-defined surface insulator demonstrates the ability to naturally self-assemble two of the most demanding components of an ideal magnetic tunnel junction.



قيم البحث

اقرأ أيضاً

Most previous investigations have shown that the surface of a ferromagnetic material may have antiferromagnetic tendencies. However, experimentally the opposite effect has been recently observed: ferromagnetism appears in some nano-sized manganites w ith a composition such that the antiferromagnetic charge-ordered CE state is observed in the bulk. A possible origin is the development of ferromagnetic correlations at the surface of these small systems. To clarify these puzzling experimental observations, we have studied the two-orbital double-exchange model near half-doping n=0.5, using open boundary conditions to simulate the surface of either bulk or nano-sized manganites. Considering the enhancement of surface charge density due to a possible AO termination (A = trivalent/divalent ion composite, O = oxygen), an unexpected surface phase-separated state emerges when the model is studied using Monte Carlo techniques on small clusters. This tendency suppresses the CE charge ordering and produces a weak ferromagnetic signal that could explain the experimental observations.
We report on a new method to determine the degree of bulk spin polarization in single crystal Co$_{(1-x)}$Fe$_x$S$_2$ by modeling magnetic Compton scattering with {it ab initio} calculations. Spin-dependent Compton profiles were measured for CoS$_2$ and Co$_{0.9}$Fe$_{0.1}$S$_2$. The {it ab initio} calculations were then refined by rigidly shifting the bands to provide the best fit between the calculated and experimental directional profiles for each sample. The bulk spin polarizations, $P$, corresponding to the spin-polarized density of states at the Fermi level, were then extracted from the {it refined} calculations. The values were found to be $P=-72 pm 6 %$ and $P=18 pm 7%$ for CoS$_2$ and Co$_{0.9}$Fe$_{0.1}$S$_2$ respectively. Furthermore, determinations of $P$ weighted by the Fermi velocity ($v_F$ or $v_F^2$) were obtained, permitting a rigorous comparison with other experimental data and highlighting the experimental dependence of $P$ on $v_F$.
Angle-resolved photoemission spectroscopy data for the bilayer manganite La1.2Sr1.8Mn2O7 show that, upon lowering the temperature below the Curie point, a coherent polaronic metallic groundstate emerges very rapidly with well defined quasiparticles w hich track remarkably well the electrical conductivity, consistent with macroscopic transport properties. Our data suggest that the mechanism leading to the insulator-to-metal transition in La1.2Sr1.8Mn2O7 can be regarded as a polaron coherence condensation process acting in concert with the Double Exchange interaction.
We investigate the interplay between spin and orbital correlations in monolayer and bilayer manganites using an effective spin-orbital t-J model which treats explicitly the e_g orbital degrees of freedom coupled to classical t_{2g} spins. Using finit e clusters with periodic boundary conditions, the orbital many-body problem is solved by exact diagonalization, either by optimizing spin configuration at zero temperature, or by using classical Monte-Carlo for the spin subsystem at finite temperature. In undoped two-dimensional clusters, a complementary behavior of orbital and spin correlations is found - the ferromagnetic spin order coexists with alternating orbital order, while the antiferromagnetic spin order, triggered by t_{2g} spin superexchange, coexists with ferro-orbital order. With finite crystal field term, we introduce a realistic model for La_{1-x}Sr_{1+x}MnO_4, describing a gradual change from predominantly out-of-plane 3z^2-r^2 to in-plane x^2-y^2 orbital occupation under increasing doping. The present electronic model is sufficient to explain the stability of the CE phase in monolayer manganites at doping x=0.5, and also yields the C-type antiferromagnetic phase found in Nd_{1-x}Sr_{1+x}MnO_4 at high doping. Also in bilayer manganites magnetic phases and the accompanying orbital order change with increasing doping. Here the model predicts C-AF and G-AF phases at high doping x>0.75, as found experimentally in La_{2-2x}Sr_{1+2x}Mn_2O_7.
We report temperature and thermal-cycling dependence of surface and bulk structures of double-layered perovskite Sr3Ru2O7 single crystals. The surface and bulk structures were investigated using low-energy electron diffraction (LEED) and single-cryst al X-ray diffraction (XRD) techniques, respectively. Single-crystal XRD data is in good agreement with previous reports for the bulk structure with RuO6 octahedral rotation, which increases with decreasing temperature (~ 6.7(6)degrees at 300 K and ~ 8.1(2) degrees at 90 K). LEED results reveal that the octahedra at the surface are much more distorted with a higher rotation angle (~ 12 degrees between 300 and 80 K) and a slight tilt ((4.5pm2.5) degrees at 300 K and (2.5pm1.7) degrees at 80 K). While XRD data confirms temperature dependence of the unit cell height/width ratio (i.e. lattice parameter c divided by the average of parameters a and b) found in a prior neutron powder diffraction investigation, both bulk and surface structures display little change with thermal cycles between 300 and 80 K.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا