ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of insulator-metal transition in EuNiO$_{3}$ under high pressure

200   0   0.0 ( 0 )
 نشر من قبل Roman Lengsdorf
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The charge transfer antiferromagnetic (T$_{N}$ =220 K) insulator EuNiO$_{3}$ undergoes, at ambient pressure, a temperature-induced metal insulator MI transition at T$_{MI}$=463 K. We have investigated the effect of pressure (up to p~20 GPa) on the electronic, magnetic and structural properties of EuNiO$_{3}$ using electrical resistance measurements, ${151}^$Eu nuclear resonance scattering of synchrotron radiation and x-ray diffraction, respectively. With increasing pressure we find at p$_{c}$ =5.8 GPa a transition from the insulating state to a metallic state, while the orthorhombic structure remains unchanged up to 20 GPa. The results are explained in terms of a gradual increase of the electronic bandwidth with increasing pressure, which results in a closing of the charge transfer gap. It is further shown that the pressure-induced metallic state exhibits magnetic order with a lowervalue of T$_{N}$ (T$_{N}$ ~120 K at 9.4 GPa) which disappears between 9.4 and 14.4 GPa.



قيم البحث

اقرأ أيضاً

On the basis of experimental thermoelectric power results and ab initio calculations, we propose that a metal-insulator transition takes place at high pressure (approximately 6 GPa) in MgV_2O_4.
The pressure-induced insulator to metal transition (IMT) of layered magnetic nickel phosphorous tri-sulfide NiPS3 was studied in-situ under quasi-uniaxial conditions by means of electrical resistance (R) and X-ray diffraction (XRD) measurements. This sluggish transition is shown to occur at 35 GPa. Transport measurements show no evidence of superconductivity to the lowest measured temperature (~ 2 K). The structure results presented here differ from earlier in-situ work that subjected the sample to a different pressure state, suggesting that in NiPS3 the phase stability fields are highly dependent on strain. It is suggested that careful control of the strain is essential when studying the electronic and magnetic properties of layered van der Waals solids.
64 - I. Leonov 2021
We compute the electronic structure, spin and charge state of Fe ions, and structural phase stability of paramagnetic CaFeO$_3$ under pressure using a fully self-consistent in charge density DFT+dynamical mean-field theory method. We show that at amb ient pressure CaFeO$_3$ is a negative charge-transfer insulator characterized by strong localization of the Fe $3d$ electrons. It crystallizes in the monoclinic $P2_1/n$ crystal structure with a cooperative breathing mode distortion of the lattice. While the Fe $3d$ Wannier occupations and local moments are consistent with robust charge disproportionation of Fe ions in the insulating $P2_1/n$ phase, the physical charge density difference around the structurally distinct Fe A and Fe B ions with the ``contracted and ``expanded oxygen octahedra, respectively, is rather weak, $sim$0.04. This implies the importance of the Fe $3d$ and O $2p$ negative charge transfer and supports the formation of a bond-disproportionated state characterized by the Fe A $3d^{5-delta}underline{L}^{2-delta}$ and Fe B $3d^5$ valence configurations with $delta ll 1$, in agreement with strong hybridization between the Fe $3d$ and O $2p$ states. Upon compression above $sim$41 GPa CaFeO$_3$ undergoes the insulator-to-metal phase transition (IMT) which is accompanied by a structural transformation into the orthorhombic $Pbnm$ phase. The phase transition is accompanied by suppression of the cooperative breathing mode distortion of the lattice and, hence, results in the melting of bond disproportionation of the Fe ions. Our analysis suggests that the IMT transition is associated with orbital-dependent delocalization of the Fe $3d$ electrons and leads to a remarkable collapse of the local magnetic moments. Our results imply the crucial importance of the interplay of electronic correlations and structural effects to explain the properties of CaFeO$_3$.
Recent experiments [arXiv: 1808.07865] on twisted bilayer graphene (TBLG) show that under hydrostatic pressure, an insulating state at quarter-filling of the moire superlattice (i.e., one charge per supercell) emerges, in sharp contrast with the prev ious ambient pressure measurements of Cao et al. where the quarter--filling state (QFS) is a metal [Nature 556, 43 & 80 (2018)]. In fact, the insulating state at the other commensurate fillings of two and three charges per supercell is also enhanced under applied pressure. Based on realistic computations of the band structure for TBLG which show that the bandwidth first shrinks and then expands with increasing hydrostatic pressure, we compute the ratio of the potential to the kinetic energy, $r_s$. We find an experimentally relevant window of pressure for which $r_s$ crosses the threshold for a triangular Wigner crystal, thereby corroborating our previous work [Nano Lett. (2018)] that the insulating states in TBLG are due to Wigner rather than Mott physics. A key prediction of this work is that the window for the onset of the hierarchy of Wigner states that obtains at commensurate fillings is dome-shaped as a function of the applied pressure, which can be probed experimentally. Theoretically, we find a peak for crystallization around $1.5$ GPa relative to the experimental optimal pressure of $1.33$ GPa for the observation of the insulating states. Consequently, TBLG provides a new platform for the exploration of Wigner physics and its relationship with superconductivity.
An abrupt first-order metal-insulator transition (MIT) without structural phase transition is first observed by current-voltage measurements and micro-Raman scattering experiments, when a DC electric field is applied to a Mott insulator VO_2 based tw o-terminal device. An abrupt current jump is measured at a critical electric field. The Raman-shift frequency and the bandwidth of the most predominant Raman-active A_g mode, excited by the electric field, do not change through the abrupt MIT, while, they, excited by temperature, pronouncedly soften and damp (structural MIT), respectively. This structural MIT is found to occur secondarily.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا