ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal search strategies for hidden targets

268   0   0.0 ( 0 )
 نشر من قبل Raphael Voituriez
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

What is the fastest way of finding a randomly hidden target? This question of general relevance is of vital importance for foraging animals. Experimental observations reveal that the search behaviour of foragers is generally intermittent: active search phases randomly alternate with phases of fast ballistic motion. In this letter, we study the efficiency of this type of two states search strategies, by calculating analytically the mean first passage time at the target. We model the perception mecanism involved in the active search phase by a diffusive process. In this framework, we show that the search strategy is optimal when the average duration of motion phases varies like the power either 3/5 or 2/3 of the average duration of search phases, depending on the regime. This scaling accounts for experimental data over a wide range of species, which suggests that the kinetics of search trajectories is a determining factor optimized by foragers and that the perception activity is adequately described by a diffusion process.



قيم البحث

اقرأ أيضاً

This review examines intermittent target search strategies, which combine phases of slow motion, allowing the searcher to detect the target, and phases of fast motion during which targets cannot be detected. We first show that intermittent search str ategies are actually widely observed at various scales. At the macroscopic scale, this is for example the case of animals looking for food ; at the microscopic scale, intermittent transport patterns are involved in reaction pathway of DNA binding proteins as well as in intracellular transport. Second, we introduce generic stochastic models, which show that intermittent strategies are efficient strategies, which enable to minimize the search time. This suggests that the intrinsic efficiency of intermittent search strategies could justify their frequent observation in nature. Last, beyond these modeling aspects, we propose that intermittent strategies could be used also in a broader context to design and accelerate search processes.
67 - V.V. Palyulin 2017
We address the generic problem of random search for a point-like target on a line. Using the measures of search reliability and efficiency to quantify the random search quality, we compare Brownian search with Levy search based on long-tailed jump le ngth distributions. We then compare these results with a search process combined of two different long-tailed jump length distributions. Moreover, we study the case of multiple targets located by a Levy searcher.
A stochastic genetic model for biological aging is introduced bridging the gap between the bit-string Penna model and the Pletcher-Neuhauser approach. The phenomenon of exponentially increasing mortality function at intermediate ages and its decelera tion at advanced ages is reproduced for both the evolutionary steady-state population and the genetically homogeneous individuals.
333 - Xin Li , D. Thirumalai 2021
Inevitably, almost all cancer patients develop resistance to targeted therapy. Intratumor heterogeneity (ITH) is a major cause of drug resistance. Mathematical models that explain experiments quantitatively is useful in understanding the origin of IT H, which then could be used to explore scenarios for efficacious therapy. Here, we develop a mathematical model to investigate ITH in breast cancer by exploiting the observation that HER2+ and HER2- cells could divide symmetrically or asymmetrically. Our predictions for the evolution of cell fractions are in quantitative agreement with single-cell experiments. Remarkably, the colony size of HER2+ cells emerging from a single HER2- cell (or vice versa), which occurs in about four cell doublings, agrees perfectly with experimental results, without tweaking any parameter in the model. The theory quantitatively explains experimental data on the responses of breast cancer tumor under different treatment protocols. We then used the model to predict that, not only the order of two drugs, but also the treatment period for each drug and the tumor cell plasticity could be manipulated to improve the treatment efficacy. Mathematical models, when integrated with data on patients, make possible exploration of a broad range of parameters readily, which might provide insights in devising effective therapies.
Single-molecule force spectroscopy has proven to be a powerful tool for studying the kinetic behavior of biomolecules. Through application of an external force, conformational states with small or transient populations can be stabilized, allowing the m to be characterized and the statistics of individual trajectories studied to provide insight into biomolecular folding and function. Because the observed quantity (force or extension) is not necessarily an ideal reaction coordinate, individual observations cannot be uniquely associated with kinetically distinct conformations. While maximum-likelihood schemes such as hidden Markov models have solved this problem for other classes of single-molecule experiments by using temporal information to aid in the inference of a sequence of distinct conformational states, these methods do not give a clear picture of how precisely the model parameters are determined by the data due to instrument noise and finite-sample statistics, both significant problems in force spectroscopy. We solve this problem through a Bayesian extension that allows the experimental uncertainties to be directly quantified, and build in detailed balance to further reduce uncertainty through physical constraints. We illustrate the utility of this approach in characterizing the three-state kinetic behavior of an RNA hairpin in a stationary optical trap.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا