ﻻ يوجد ملخص باللغة العربية
We have constructed a mm-scale Ioffe-Pritchard trap capable of providing axial field curvature of 7800 G/cm$^2$ with only 10.5 Amperes of driving current. Our novel fabrication method involving electromagnetic coils formed of hard anodized aluminum strips is compatible with ultra-high vacuum conditions, as demonstrated by our using the trap to produce Bose-Einstein condensates of 10$^6$ $^87$Rb atoms. The strong axial curvature gives access to a number of experimentally interesting configurations such as tightly confining prolate, nearly isotropic, and oblate spheroidal traps, as well as traps with variable tilt angles with respect to the nominal axial direction.
We produce Bose-Einstein condensates of 6Li2 molecules in a low power (22 W) crossed optical dipole trap. Fermionic 6Li atoms are collected in a magneto-optical trap from a Zeeman slowed atomic beam, then loaded into the optical dipole trap where the
We report on the generation of a Bose-Einstein condensate in a gas of chromium atoms, which will make studies of the effects of anisotropic long-range interactions in degenerate quantum gases possible. The preparation of the chromium condensate requi
We report on the realisation of a stiff magnetic trap with independently adjustable trap frequencies, $omega_z$ and $omega_r$, in the axial and radial directions respectively. This has been achieved by applying an axial modulation to a Time-averaged
We report the observation of a Bose Einstein condensate in a bosonic isotope of ytterbium (170Yb). More than 10^6 atoms are trapped in a crossed optical dipole trap and cooled by evaporation. Condensates of approximately 10^4 atoms have been obtained
We report an apparatus and method capable of producing Bose-Einstein condensates (BECs) of ~1x10^6 87Rb atoms, and ultimately designed for sympathetic cooling of 133Cs and the creation of ultracold RbCs molecules. The method combines several elements