ترغب بنشر مسار تعليمي؟ اضغط هنا

A high frequency optical trap for atoms using Hermite-Gaussian beams

93   0   0.0 ( 0 )
 نشر من قبل Todd Meyrath
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an experimental method to create a single high frequency optical trap for atoms based on an elongated Hermite-Gaussian TEM01 mode beam. This trap results in confinement strength similar to that which may be obtained in an optical lattice. We discuss an optical setup to produce the trapping beam and then detail a method to load a Bose-Einstein Condensate (BEC) into a TEM01 trap. Using this method, we have succeeded in producing individual highly confined lower dimensional condensates.

قيم البحث

اقرأ أيضاً

We derive an effective low-dimensional Hamiltonian for strongly interacting ultracold atoms in a transverse trapping potential near a wide Feshbach resonance. The Hamiltonian includes crucial information about transverse excitations in an effective m odel with renormalized interaction between atoms and composite dressed molecules. We fix all the parameters in the Hamiltonian for both one- and two-dimensional cases.
258 - T. Maier , H. Kadau , M. Schmitt 2014
We present our technique to create a magneto-optical trap for dysprosium atoms using the narrow-line cooling transition at 626$,$nm to achieve suitable conditions for direct loading into an optical dipole trap. The magneto-optical trap is loaded from an atomic beam via a Zeeman slower using the strongest atomic transition at 421$,$nm. With this combination of two cooling transitions we can trap up to $2.0cdot10^8$ atoms at temperatures down to 6$, mu$K. This cooling approach is simpler than present work with ultracold dysprosium and provides similar starting conditions for a transfer to an optical dipole trap.
47 - P. Cheinet , S. Trotzky , M. Feld 2008
We report on the observation of an interaction blockade effect for ultracold atoms in optical lattices, analogous to Coulomb blockade observed in mesoscopic solid state systems. When the lattice sites are converted into biased double wells, we detect a discrete set of steps in the well population for increasing bias potentials. These correspond to tunneling resonances where the atom number on each side of the barrier changes one by one. This allows us to count and control the number of atoms within a given well. By evaluating the amplitude of the different plateaus, we can fully determine the number distribution of the atoms in the lattice, which we demonstrate for the case of a superfluid and Mott insulating regime of 87Rb.
We propose a trap for cold neutral atoms using a fictitious magnetic field induced by a nanofiber-guided light field. In close analogy to magnetic side-guide wire traps realized with current-carrying wires, a trapping potential can be formed when app lying a homogeneous magnetic bias field perpendicular to the fiber axis. We discuss this scheme in detail for laser-cooled cesium atoms and find trap depths and trap frequencies comparable to the two-color nanofiber-based trapping scheme but with one order of magnitude lower powers of the trapping laser field. Moreover, the proposed scheme allows one to bring the atoms closer to the nanofiber surface, thereby enabling efficient optical interfacing of the atoms with additional light fields. Specifically, optical depths per atom, $sigma_0/A_{rm eff}$, of more than 0.4 are predicted, making this system eligible for nanofiber-based nonlinear and quantum optics experiments.
We found that small perturbations of the optical vortex core in the Laguerre-Gaussian (LG) beams generate a fine structure of the Hermite-Gauss (HG) mode spectrum. Such perturbations can be easily simulated by weak variations of amplitudes and phases of the HG modes in the expansion of the LG beam field. We also theoretically substantiated and experimentally implemented a method for measuring the topological charge of LG beams with an arbitrary number of ring dislocations. Theoretical discussion and experimental studies were accompanied by simple examples of estimating the orbital angular momentum and the topological charge of perturbed LG beams.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا