ﻻ يوجد ملخص باللغة العربية
A laser facility based on a linear image sensor with a sampling period of 100microseconds allows to investigate the dissipative dynamics of a vibrated granular matter under gravity. The laser reveals the vertical movement of an individual Zirconia-Ytria stabilized 2mm ball at the surface of a weakly excited 3D granular matter bed. The stochastic realizations are measured from the top of the container. Then, power spectra measurements reveal the different cooperative dynamics of the fluidized gap. We also carried out measurements for one steel ball and many balls in 1D and 3D systems. We fit the measured different regimes with generalized Langevin pictures. We introduce a fractional temporal operator to characterize the ensemble of dissipative particles which cannot be represented by a single Langevin particle in a complex fluid.
Some general dynamical properties of models for compaction of granular media based on master equations are analyzed. In particular, a one-dimensional lattice model with short-ranged dynamical constraints is considered. The stationary state is consist
Using high-speed video and magnetic resonance imaging (MRI) we study the motion of a large sphere in a vertically vibrated bed of smaller grains. As previously reported we find a non-monotonic density dependence of the rise and sink time of the large
We describe a series of experiments and computer simulations on vibrated granular media in a geometry chosen to eliminate gravitationally induced settling. The system consists of a collection of identical spherical particles on a horizontal plate vib
The spontaneous symmetry breaking in a vibro-fluidized low-density granular gas in three connected compartments is investigated. When the total number of particles in the system becomes large enough, particles distribute themselves unequally among th
We present results from a series of experiments on a granular medium sheared in a Couette geometry and show that their statistical properties can be computed in a quantitative way from the assumption that the resultant from the set of forces acting i