ﻻ يوجد ملخص باللغة العربية
X-ray diffraction experiments were performed on MnO confined in mesoporous silica SBA-15 and MCM-41 matrices with different channel diameters. The measured patterns were analyzed by profile analysis and compared to numerical simulations of the diffraction from confined nanoparticles. From the lineshape and the specific shift of the diffraction reflections it was shown that the embedded objects form ribbon-like structures in the SBA-15 matrices with channels diameters of 47-87 {AA}, and nanowire-like structures in the MCM-41 matrices with channels diameters of 24-35 {AA}. In the latter case the confined nanoparticles appear to be narrower than the channel diameters. The physical reasons for the two different shapes of the confined nanoparticles are discussed.
The Raman shifts of nanocrystalline GaSb excited by an Ar+ ion laser of wavelengths 514.5, 496.5, 488.0, 476.5, and 457.9 nm are studied by experiment and explained by phonon confinement, tensile stress, resonance Raman scattering and quantum size ef
In order to control and tailor the properties of nanodots, it is essential to separate the effects of quantum confinement from those due to the surface, and to gain insight into the influence of preparation conditions on the dot physical properties.
Highly crystalline UO2 nanoparticles (NPs) with sizes of 2-3 nm were produced by fast chemical deposition of uranium(IV) under reducing conditions at pH 8-11. The particles were then characterized by microscopic and spectroscopic techniques including
We demonstrate a remarkable equivalence in structure measured by total X-ray scattering methods between very small metallic nanoparticles and bulk metallic glasses (BMGs), thus connecting two disparate fields, shedding new light on both. Our results
Developing characterization techniques and analysis methods adapted to the investigation of nanoparticles (NPs) is of fundamental importance considering the role of these materials in many fields of research. The study of actinide based NPs, despite