ترغب بنشر مسار تعليمي؟ اضغط هنا

Approaching Unit Visibility for Control of a Superconducting Qubit with Dispersive Readout

81   0   0.0 ( 0 )
 نشر من قبل Andreas Wallraff
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In a Rabi oscillation experiment with a superconducting qubit we show that a visibility in the qubit excited state population of more than 90 % can be attained. We perform a dispersive measurement of the qubit state by coupling the qubit non-resonantly to a transmission line resonator and probing the resonator transmission spectrum. The measurement process is well characterized and quantitatively understood. The qubit coherence time is determined to be larger than 500 ns in a measurement of Ramsey fringes.



قيم البحث

اقرأ أيضاً

We demonstrate high-contrast state detection of a superconducting flux qubit. Detection is realized by probing the microwave transmission of a nonlinear resonator, based on a SQUID. Depending on the driving strength of the resonator, the detector can be operated in the monostable or the bistable mode. The bistable operation combines high-sensitivity with intrinsic latching. The measured contrast of Rabi oscillations is as high as 87 %; of the missing 13 %, only 3 % is unaccounted for. Experiments involving two consecutive detection pulses are consistent with preparation of the qubit state by the first measurement.
The act of measurement bridges the quantum and classical worlds by projecting a superposition of possible states into a single, albeit probabilistic, outcome. The time-scale of this instantaneous process can be stretched using weak measurements so th at it takes the form of a gradual random walk towards a final state. Remarkably, the interim measurement record is sufficient to continuously track and steer the quantum state using feedback. We monitor the dynamics of a resonantly driven quantum two-level system -- a superconducting quantum bit --using a near-noiseless parametric amplifier. The high-fidelity measurement output is used to actively stabilize the phase of Rabi oscillations, enabling them to persist indefinitely. This new functionality shows promise for fighting decoherence and defines a path for continuous quantum error correction.
Spectral properties of a quantum circuit are efficiently read out by monitoring the resonance frequency shift it induces in a microwave resonator coupled to it. When the two systems are strongly detuned, theory attributes the shift to an effective re sonator capacitance or inductance that depends on the quantum circuit state. At small detuning, the shift arises from the exchange of virtual photons, as described by the Jaynes-Cummings model. Here we present a theory bridging these two limits and illustrate, with several examples, its necessity for a general description of quantum circuits readout.
Motivated by recent experiments, we study the dynamics of a qubit quadratically coupled to its detector, a damped harmonic oscillator. We use a complex-environment approach, explicitly describing the dynamics of the qubit and the oscillator by means of their full Floquet state master equations in phase-space. We investigate the backaction of the environment on the measured qubit and explore several measurement protocols, which include a long-term full read-out cycle as well as schemes based on short time transfer of information between qubit and oscillator. We also show that the pointer becomes measurable before all information in the qubit has been lost.
200 - J. M. Gambetta , A. A. Houck , 2010
We present a superconducting qubit for the circuit quantum electrodynamics architecture that has a tunable coupling strength g. We show that this coupling strength can be tuned from zero to values that are comparable with other superconducting qubits . At g = 0 the qubit is in a decoherence free subspace with respect to spontaneous emission induced by the Purcell effect. Furthermore we show that in the decoherence free subspace the state of the qubit can still be measured by either a dispersive shift on the resonance frequency of the resonator or by a cycling-type measurement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا