ﻻ يوجد ملخص باللغة العربية
Single crystals of RPtIn, $R~=$ Y, Gd - Lu were grown out of In-rich ternary solution. Powder X-ray diffraction data on all of these compounds were consistent with the hexagonal ZrNiAl-type structure (space group P $bar{6}$ 2 m). The $R~=$ Tb and Tm members of the series appear to order antiferromagnetically ($T_N~=$ 46.0 K, and 3.0 K respectively), whereas the $R~=$ Gd, Dy - Er compounds have at least a ferromagnetic component of the magnetization along the c-axis. The magnetic ordering temperatures of all of these systems seem to scale well with the de Gennes factor dG, whereas the curious switching from ferromagnetic to antiferromagnetic ordering across the series is correlated with a change in anisotropy, such that, in the low temperature paramagnetic state, $chi_{ab} > chi_c$ for the antiferromagnetic compounds, and $chi_c > chi_{ab}$ for the rest. In order to characterize the magnetic ordering across the RPtIn series, a three-dimensional model of the magnetic moments in Fe$_2$P-type systems was developed, using the textit{three co-planar Ising-like systems model} previously introduced for the extremely planar TbPtIn compound: given the orthorhombic point symmetry of the R sites, we assumed the magnetic moments to be confined to six non-planar easy axes, whose in-plane projections are rotate by $60^0$ with respect to each other. Such a model is consistent with the reduced high-field magnetization values observed for the RPtIn compounds, R$~=$ Tb - Tm, and qualitatively reproduces the features of the angular dependent magnetization of Ho$_x$Y$_{1-x}$PtIn at $H~=$ 55 kG.
We have synthesized R5Pb3 (R = Gd-Tm) compounds in polycrystalline form and performed structural analysis, magnetization, and neutron scattering measurements. For all R5Pb3 reported here the Weiss temperatures {theta}W are several times smaller than
Single crystals of $R$Mg$_{2}$Cu$_{9}$ ($R$=Y, Ce-Nd, Gd-Dy, Yb) were grown using a high-temperature solution growth technique and were characterized by measurements of room-temperature x-ray diffraction, temperature-dependent specific heat and tempe
We present a detailed characterization of the recently discovered i-$R$-Cd ($R$ = Y, Gd-Tm) binary quasicrystals by means of x-ray diffraction, temperature-dependent dc and ac magnetization, temperature-dependent resistance and temperature-dependent
We analyze theoretically a common experimental process used to obtain the magnetic contribution to the specific heat of a given magnetic material. In the procedure, the specific heat of a non-magnetic analog is measured and used to subtract the non-m
We use high resolution angle-resolved photoemission spectroscopy (ARPES) and electronic structure calculations to study the electronic properties of rare-earth monoantimonides RSb (R = Y, Ce, Gd, Dy, Ho, Tm, Lu). The experimentally measured Fermi sur