ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic and Transport Properties of Ternary Indides of type R2CoIn8 (R = Ce, Pr and Dy)

205   0   0.0 ( 0 )
 نشر من قبل Satish Malik
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have synthesized and investigated the magnetic and transport properties of a series of compounds, R2CoIn8 (R = rare earth). Compounds form in single phase with a tetragonal structure (space group P4/mmm, no. 162). The Ce compound shows heavy fermion behavior. The magnetic susceptibility of Pr2CoIn8 shows a marked deviation from the Curie-Weiss behavior at low temperatures, which is attributed to the crystalline electric field effects. Heat capacity and magnetization measurements show that Dy2CoIn8 undergoes a magnetic transition at 17 K and a second transition near 5 K, the latter of which may be due to spin reorientation. Magnetization of this compound shows two metamagnetic transitions approximately at 3.6 T and 8.3 T.



قيم البحث

اقرأ أيضاً

A ternary type-I Si clathrate, K8AlxSi46-x, which is a candidate functional material composed of abundant non-toxic elements, was synthesized and its transport properties were investigated at temperatures ranging from 10 to 320 K. The synthesized com pound is confirmed to be the ternary type-I Si clathrate K8Al7Si39 with a lattice parameter of a = 10.442 A using neutron powder diffractometry and inductively coupled plasma optical emission spectrometry. Electrical resistivity and Hall coefficient measurements revealed that K8Al7Si39 is a metal with electrons as the dominant carriers at a density of approximately 1x10^27 /m3. The value of Seebeck coefficient for K8Al7Si39 is negative and its absolute value increases with the temperature. The temperature dependence of the thermal conductivity is similar to that for a crystalline solid. The dimensionless figure of merit is approximately 0.01 at 300 K, which is comparable to that for other ternary Si clathrates.
We report on structural and superconducting properties of La(3-x)R(x)Ni2B2N3 where La is substituted by the magnetic rare-earth elements Ce, Pr, Nd. The compounds Pr3Ni2B2N3 and Nd3Ni2B2N3 are characterized for the first time. Powder X-ray diffractio n confirmed all samples R3Ni2B2N3 with R = La, Ce, Pr, Nd and their solid solutions to crystallize in the body centered tetragonal La3Ni2B2N3 structure type. Superconducting and magnetic properties of La(3-x)R(x)Ni2B2N3 were studied by resistivity, specific heat and susceptibility measurements. While La3Ni2B2N3 has a superconducting transition temperature Tc ~ 14 K, substitution of La by Ce, Pr, and Nd leads to magnetic pair breaking and, thus, to a gradual suppression of superconductivity. Pr3Ni2B2N3 exibits no long range magnetic order down to 2 K, Nd3Ni2B2N3 shows ferrimagnetic ordering below T_C = 17 K and a spin reorientation transition to a nearly antiferromagnetic state at 10 K.
65 - P. Puphal , C. Mielke , N. Kumar 2019
We explore two methods for single crystal growth of the theoretically proposed magnetic Weyl semimetals $R$AlGe ($R$ = Pr,Ce), which prove that a floating zone technique, being both crucible- and flux-free, is crucial to obtain perfectly stoichiometr ic $R$AlGe crystals. In contrast, the crystals grown by a flux growth technique tend to be Al-rich. We further present both structural and elemental analysis, along with bulk magnetization and electrical resistivity data on the crystals prepared by the floating zone technique. Both systems with the intended 1:1:1 stoichiometry crystallize in the anticipated polar I4$_{1}$md (No. 109) space group, although neither displays the theoretically expected ferromagnetic ground state. Instead PrAlGe displays a spin-glass-like transition below 16 K with an easy-c-axis and CeAlGe has an easy-ab-plane antiferromagnetic order below 5 K. The grown crystals provide an ideal platform for microscopic studies of the magnetic field-tunable correlation physics involving magnetism and topological Weyl nodes.
Single crystals of $R$Mg$_{2}$Cu$_{9}$ ($R$=Y, Ce-Nd, Gd-Dy, Yb) were grown using a high-temperature solution growth technique and were characterized by measurements of room-temperature x-ray diffraction, temperature-dependent specific heat and tempe rature-, field-dependent resistivity and anisotropic magnetization. YMg$_{2}$Cu$_{9}$ is a non-local-moment-bearing metal with an electronic specific heat coefficient, $gamma sim$ 15 mJ/mol K$^2$. Yb is divalent and basically non-moment bearing in YbMg$_{2}$Cu$_{9}$. Ce is trivalent in CeMg$_{2}$Cu$_{9}$ with two magnetic transitions being observed at 2.1 K and 1.5 K. PrMg$_{2}$Cu$_{9}$ does not exhibit any magnetic phase transition down to 0.5 K. The other members being studied ($R$=Nd, Gd-Dy) all exhibits antiferromagnetic transitions at low-temperatures ranging from 3.2 K for NdMg$_{2}$Cu$_{9}$ to 11.9 K for TbMg$_{2}$Cu$_{9}$. Whereas GdMg$_{2}$Cu$_{9}$ is isotropic in its paramagnetic state due to zero angular momentum ($L$=0), all the other local-moment-bearing members manifest an anisotropic, planar magnetization in their paramagnetic states. To further study this planar anisotropy, detailed angular-dependent magnetization was carried out on magnetically diluted (Y$_{0.99}$Tb$_{0.01}$)Mg$_{2}$Cu$_{9}$ and (Y$_{0.99}$Dy$_{0.01}$)Mg$_{2}$Cu$_{9}$. Despite the strong, planar magnetization anisotropy, the in-plane magnetic anisotropy is weak and field-dependent. A set of crystal electric field parameters are proposed to explain the observed magnetic anisotropy.
The antiferromagnetic transition is investigated in the rare-earth (R) tritelluride RTe3 family of charge density wave (CDW) compounds via specific heat, magnetization and resistivity measurements. Observation of the opening of a superzone gap in the resistivity of DyTe3 indicates that additional nesting of the reconstructed Fermi surface in the CDW state plays an important role in determining the magnetic structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا