ﻻ يوجد ملخص باللغة العربية
Solving the Gross--Pitaevskii (GP) equation describing a Bose--Einstein condensate (BEC) immersed in an optical lattice potential can be a numerically demanding task. We present a variational technique for providing fast, accurate solutions of the GP equation for systems where the external potential exhibits rapid varation along one spatial direction. Examples of such systems include a BEC subjected to a one--dimensional optical lattice or a Bragg pulse. This variational method is a hybrid form of the Lagrangian Variational Method for the GP equation in which a hybrid trial wavefunction assumes a gaussian form in two coordinates while being totally unspecified in the third coordinate. The resulting equations of motion consist of a quasi--one--dimensional GP equation coupled to ordinary differential equations for the widths of the transverse gaussians. We use this method to investigate how an optical lattice can be used to move a condensate non--adiabatically.
In this article, we present theoretical as well as experimental results on resonantly enhanced tunneling of Bose-Einstein condensates in optical lattices both in the linear case and for small nonlinearities. Our results demonstrate the usefulness of
We present our experimental investigations on the subject of nonlinearity-modified Bloch-oscillations and of nonlinear Landau-Zener tunneling between two energy bands in a rubidium Bose Einstein condensate in an accelerated periodic potential. Nonlin
We analyze time-of-flight absorption images obtained with dilute Bose-Einstein con-densates released from shaken optical lattices, both theoretically and experimentally. We argue that weakly interacting, ultracold quantum gases in kilohertz-driven op
We study the dynamics of Bose-Einstein condensates flowing in optical lattices on the basis of quantum field theory. For such a system, a Bose-Einstein condensate shows a unstable behavior which is called the dynamical instability. The unstable syste
We report on a simple novel trapping scheme for the generation of Bose-Einstein condensates of $^{87}$Rb atoms. This scheme employs a near-infrared single beam optical dipole trap combined with a weak magnetic quadrupole field as used for magneto-opt