ﻻ يوجد ملخص باللغة العربية
Low temperature heat transport was used to investigate the ground state of high-purity single crystals of the lightly-doped cuprate YBa$_{2}$Cu$_{3}$O$_{6.33}$. Samples were measured on either side of the superconducting phase boundary, in both zero and applied magnetic field. We report the observation of delocalized fermionic excitations at zero energy in the non-superconducting state, which shows that the ground state of underdoped cuprates is metallic. Its low-energy spectrum appears to be similar to that of the d-wave superconductor, i.e. nodal. The insulating ground state observed in underdoped La$_{2-x}$Sr$_{x}$CuO$_4$ is attributed to the competing spin-density-wave order present in that system.
We study the static charge correlation function in an one-band model on a square lattice. The Hamiltonian consist of effective hoppings of the electrons between the lattice sites and the Heisenberg Hamiltonian. Approximating the irreducible charge co
Pair density waves, identified by Cooper pairs with finite center-of-mass momentum, have recently been observed in copper oxide based high T$_textrm{c}$ superconductors (cuprates). A charge density modulation or wave is also ubiquitously found in und
Despite more than two decades of intensive investigations, the true nature of high temperature (high-$T_c$) superconductivity observed in the cuprates remains elusive to the researchers. In particular, in the so-called `underdoped region, the overall
In underdoped cuprates, only a portion of the Fermi surface survives as Fermi arcs due to pseudogap opening. In hole-doped La$_{2}$CuO$_4$, we have deduced the coherence temperature $T_{coh}$ of quasi-particles on the Fermi arc above which the broade
The resonating valence bond spin liquid model for the underdoped cuprates has as an essential element, the emergence of a pseudogap. This new energy scale introduces asymmetry in the quasiparticle density of states because it is associated with the